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Classification of processes as stationary or nonstationary has been recognized as an important and
unresolved problem in the analysis of scaling signals. Stationarity or nonstationarity determines
not only the form of autocorrelations and moments but also the selection of estimators. In this
paper, a methodology for classifying scaling processes as stationary or nonstationary is proposed.
The method is based on wavelet Tsallis q-entropies and particularly on the behaviour of these
entropies for scaling signals. It is demonstrated that the observedwavelet Tsallis q-entropies of 1/f
signals can be modeled by sum-cosh apodizing functions which allocates constant entropies to a
set of scaling signals and varying entropies to the rest and that this allocation is controlled by q. The
proposed methodology, therefore, differentiates stationary signals from non-stationary ones based
on the observed wavelet Tsallis entropies for 1/f signals. Experimental studies using synthesized
signals confirm that the proposed method not only achieves satisfactorily classifications but also
outperforms current methods proposed in the literature.

1. Introduction

The theory of scaling processes has shown to be meaningful in several fields of applied
science [1]. Some aspects of scaling behaviour have been reported in finance [2, 3], in the
analysis of heart rate variability and EEGs in physiology [4, 5], in the characterization of
mood and other behavioural variables in psychology [6], in the modelling of computer
network traffic and delays in LANs and WANs [7, 8], and in the study of the velocity field
of turbulent flows in turbulence [9–12] among others. The scaling signals studied in these
fields can be modelled by a wide variety of stochastic processes, the majority of which are
characterized by the single scaling index α or the associated Hurst indexH. Theoretically, the
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scaling index α determines not only the nature of the signal in terms of smooth, stationarity,
nonstationarity, and correlations but also the selection of the methodologies employed to
estimate α. The boundary α = 1 is of special importance since processes for which α < 1
are categorized as stationary in the sense that their statistical properties are invariant to
translations and processes with α > 1 are non-stationary. The stationary/non-stationary con-
dition is fundamental for analysis and estimation purposes as many estimators have been
devised for stationary signals while others have been formulated for non-stationary ones.
The application of a non-stationary signal to an analysis/estimation technique designed to
work in stationary conditions will result in an ambiguous analysis/estimate. For a review
on the methodologies used to estimate α and the range of the scaling index over which they
are applicable please refer to the work of Serinaldi [13], Malamud and Turcotte [14], and
Gallant et al. [15]. In practice, a scaling process analyst does not known apriori the nature
of the signal, and usually the estimation of α is performed somewhat arbitrarily without a
stage of signal classification. Many articles in the literature, claiming that a given phenom-
ena can be modelled by scaling signals, have performed the estimation of α without a phase
of signal classification, and therefore their results remain questionable. Moreover, the scaling
property of signals, in particular the long-memory characteristic, can also be caused by struc-
tural breaks in the mean, a common non-stationarity embedded in the signal [16, 17]. Because
of this, the phase of signal classification is not only important but also necessary. The phase
of signal classification was first recognized as important by Eke and coworkers in physio-
logical signal analysis [4–6]. In their work, Eke et al. emphasized the importance of signal
classification, the implications of omitting this phase, and the necessity of including this
phase as a first step for enhancing the estimation and analysis of scaling signals. They claimed
that by integrating this step in the traditional estimation and analysis methodologies, signif-
icant improvements can be achieved, and the possibility of misinterpreting the phenomena
is decreased. Traditionally, signal classification has been performed by methods based on
PSD [5, 6] on fractional Brownian motions, fBms, and fractional Gaussian noises, fGns.
The characteristics of fBms and fGns, however, are visually different, and the signal classi-
fication process can even be performed by eye. Motivated by this, the present paper not only
extends the results presented in [5] for the case of PPL signals but also proposes a metho-
dology based on wavelet Tsallis q-entropies to differentiate scaling processes as stationary
or non-stationary. The method is based on the observed sum-cosh window behaviour of
these entropies which allocates constant entropies to stationary signals and varying entropies
to non-stationary ones reducing the classification process to the constant/nonconstant
character of the observed estimated entropies of the signals under study. Experimental and
comparison studies not only confirm the capabilities of the method but also their advantages
over standard methodologies based on PSD. The remainder of the paper is structured as
follows. Section 2 provides a brief review of scaling processes, their definitions, and some
standard results concerning its wavelet analysis. Section 3 describes wavelet entropies and
its applications and derives the sum-cosh window behaviour observed in wavelet Tsallis q-
entropies for signals with 1/fα behaviour. The techniques employed for classifying scaling
signals as stationary or non-stationary as well as their advantages and disadvantages are
briefly reviewed in Section 4 along with a description of the proposed methodology based
on wavelet Tsallis q-entropies to discriminate signals. Section 5 describes the methodology
used in the paper for testing the accuracy and robustness of the proposed technique and also
details the comparative study to be performed among the techniques used for scaling signal
classification. Section 6 presents the experimental results, and finally the conclusions of the
paper are drawn in Section 7.
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2. Wavelet Analysis of Scaling Processes

2.1. Scaling Processes

Scaling processes of parameter α, also called 1/fα or power-law processes, have been exten-
sively applied and studied in the scientific literature since they model diverse phenomena
[2, 3] within these fields. These processes are sufficiently characterized by the parameter α,
called the scaling-index, which determines many of their properties. Various definitions have
been proposed in the scientific literature, some based on their characteristics such as self-
similarity or long memory, others based on the behaviour of their PSD. In this paper, a scaling
process is a random process for which the associated PSD behaves as a power law in a range
of frequencies [8, 9], that is,

S
(
f
) ∼ cf

∣
∣f
∣
∣−α, f ∈ (fa, fb

)
, (2.1)

where cf is a constant, α ∈ R the scaling index, and fa, fb represent the lower and upper
bound frequencies upon which the power-law scaling holds. Depending upon fa, fb, and
α, several particular scaling processes and behaviours can be identified. Independently of α,
local regularity and band-pass power-law behaviour are observed whenever fa → ∞ and
fb > fa � 0, respectively. When the scaling-index α is taken into consideration, long-memory
behaviour is observed when both 0 < α < 1 and fb > fa → 0. Self-similar features (in
terms of distributional invariance under dilations) are observed in all the scaling-index range
for all f . Scaling-index α determines not only the stationary and non-stationary condition of
the scaling process but also the smoothness of their sample path realizations. The greater the
scaling index α, the smoother their sample paths. As a matter of fact, as long as α ∈ (−1, 1), the
scaling process is stationary (or stationary with long memory for small f and α ∈ (0, 1)) and
non-stationary when α ∈ (1, 3). Some transformations can make a stationary process appear
non-stationary and vice versa. Outside the range α ∈ (−1, 3), several other processes can be
identified, for example, the so-called extended fBms and fGns defined in thework of Serinaldi
[13]. The persistence of scaling processes can also be quantified by the index α, and within
this framework, scaling processes possess negative persistence as long as α < 0, positive
weak long persistence when 0 < α < 1, and positive strong long persistence whenever
α > 1. Scaling signals encompasses a large family of well-known random signals, for example,
fBms, fGns [18], pure power-law processes [9], multifractal processes [8], and so forth. FBm,
BH(t), comprises a family of Gaussian, self-similar processes with stationary increments, and
because of the Gaussianity, it is completely characterized by its autocovariance sequence
ACVS, which is given by

EBH(t)BH(s) = RBH (t, s) =
σ2

2

{
|t|2H + |s|2H − |t − s|2H

}
, (2.2)

where 0 < H < 1 is the Hurst-index. FBm is non-stationary, and as such no spectrum can be
defined on it; however, fBm possesses an average spectrum of the form SfBm(f) ∼ c|f |−(2H+1)

as f → 0which implies that α = 2H+1 [19]. FBm has been applied very often in the literature;
however it is its related process, fGn, which has gained widespread prominence because of
the stationarity of its realizations.
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Figure 1: Sample path realizations of some scaling processes. Top left depicts a fGn with α = −0.1, top right
a PPL process with α = −0.1, bottom left plot a fBm signal with α = 1.9, and finally bottom right plot a PPL
process with α = 1.9.

FGn, GH,δ(t), obtained by sampling a fBm process and computing increments of the
form GH,δ(t) = 1/δ{BH(t + δ) − BH(t)}, δ ∈ Z+ (i.e., by differentiating fBm), is a well-known
Gaussian process. The ACVS of this process is given by

EGH,δ(t)GH,δ(t + τ) =
σ2

2

{
|τ + δ|2H + |τ − δ|2H − 2|τ |2H

}
, (2.3)

whereH ∈ (0, 1) is the Hurst-index. The associated PSD of fGn is given by [9]

SfGn
(
f
)
= 4σ2

XCHsin2(πf
) ∞∑

j=−∞

1
∣∣f + j

∣∣2H+1
,
∣∣f
∣∣ ≤ 1

2
, (2.4)

where σX is the process’ variance andCH is a constant. FGn is stationary and for large enough
τ and under the restriction of 1/2 < H < 1 possesses long-memory or long-range dependence
(LRD). The scaling index α associated to fGn signals is given by α = 2H − 1 as its PSD, given
by (2.4), behaves asymptotically as SfGn(f) ∼ c|f |−2H+1 for f → 0. Another scaling process
of interest is the family of discrete pure power-law processes (dPPL) which are defined as
processes for which their PSD behaves as SX(f) = CS|f |−α for |f | ≤ 1, where α ∈ R and Cs

represent a constant. PPL signals are stationary when the power-law parameter α < 1 and
non-stationary whenever α > 1. As stated in the work of Percival [9], the characteristics of
these processes and those of fBms/fGns are similar; however, the differences between fBms
and PPLs with α > 1 are more evident. As a matter of fact, differentiation of stationarity/non-
stationarity is far more difficult for PPL than for fBms/fGns. Figure 1 displays some realiza-
tions of fGn, fBm, and PPL processes. The scaling-index α of the PPL signals is identical to the
scaling-index of the associated fGn and fBm. Note that the characteristics of the sample paths
of fGn are fairly different from those of fBm. In the case of PPL processes, this differentiation
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is not so evident, and as a matter of fact when the scaling indexes approach the boundary
α = 1, classification becomes complex. For further information on the properties, estimators,
and analysis techniques of scaling processes please refer to [2, 3, 8–10, 13, 14].

2.2. Wavelet Analysis of Scaling Signals

Wavelets and wavelet transforms have been applied for the analysis of deterministic and
random signals in almost every field of science [20–22]. The advantages of wavelet analysis
over standard techniques of signal analysis have been widely reported and its potential for
non-stationary signal analysis proven. Wavelet analysis represents a signal Xt in time-scale
domain by the use of an analyzing or mother wavelet, ψo(t) [23]. For the purposes of the
paper, ψo(t) ∈ L1 ∩ L2 and the family of shifted and dilated ψo(t) form an orthonormal basis
of L2(R). In addition, the finiteness of the mean average energy (E

∫ |X(u)|2du < ∞) on the
scaling process allows to represent it as a linear combination of the form:

Xt =
L∑

j=1

∞∑

k=−∞
dX
(
j, k
)
ψj,k(t), (2.5)

where dX(j, k) is the DWT of Xt and {ψj,k(t) = 2−j/2ψo(2−j t − k), j, k ∈ Z} is a family of
dilated (of order j) and shifted (of order k) versions of ψo(t). The coefficients dX(j, k) in
(2.5), obtained by DWT, represent a random process for every j, a random variable for
fixed j and k, and as such many statistical analyses can be performed on them. Equation
(2.5) represents signal Xt as a linear combination of L detail signals, obtained by means of
the DWT. DWT is related to the theory of multiresolution signal representation (MRA), in
which signals (or processes) can be represented at different resolutions based on the number
of detail signals added to the low-frequency approximation signal. Detail random signals
(dX(j, k)) are obtained by projections of signalXt into wavelet spacesWj , and approximation
coefficients (aX(j, k)) are obtained by projections of Xt into related approximation spaces
Vj . In the study of scaling processes, wavelet analysis has been primarily applied in the
estimation of the wavelet variance [20, 24]. Wavelet variance or spectrum of a random
processes accounts for computing variances of wavelet coefficients at each scale. Wavelet
variance not only has permitted to propose estimation procedures for the scaling-index α
but also to compute entropies associated with the scaling signals. Wavelet spectrum has also
been used for detecting nonstationarities embedded in Internet traffic [20]. For stationary
zero-mean processes, wavelet spectrum is given by

Ed2
X

(
j, k
)
=
∫∞

−∞
SX
(
2−jf

)∣∣Ψ
(
f
)∣∣2df, (2.6)

where Ψ(f) =
∫
ψ(t)e−j2πftdt is the Fourier integral of ψo(t) and SX(·) represents the PSD

of Xt. Table 1 summarizes the wavelet spectrum for some standard scaling processes. For
further details on the analysis, estimation, and synthesis of scaling processes please refer to
the works of Abry and Veitch [23] and Bardet [25] and references therein.
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Table 1: Wavelet spectrum or wavelet variance associated with different types of scaling processes. E(·),
Var(·), and Ψ(·) represent expectation, variance, and Fourier integral operators, respectively.

Type of scaling process Associated wavelet spectrum or variance

Long-memory process of index α Ed2
X(j, k) ∼ 2jαC(ψ, α), C(ψ, α) = cγ

∫ |f |−α|Ψ(f)|2df
Self-similar process of indexH Ed2

X(j, k) = 2j(2H+1)
Ed2

X(0, k)

Hsssi process of indexH Vard2
X(j, k) = 2j(2H+1) VardX(0, 0)

Pure power-law process of index α Ed2
X(j, k) = C2

jα

3. Wavelet-Based q-Entropies

The concept of entropy has traditionally been employed to measure the information content
of random signals and systems [26, 27]. Recently, entropic functionals, such as Shannon,
Rényi, and Tsallis, have been extensively applied to quantify the complexities associated
with random and nonlinear phenomena [28]. Information planes, which consist of the
product of positive measures of entropic functional and the Fisher information (and also of
entropy/disequilibrium product), are now being applied in numerous systems (e.g., atomic,
molecular, geophysical, etc.). Entropic quantities involve the calculation of functionals on
probability densities or probability mass functions (pmf). Depending upon the domain in
which the pmfs are obtained, entropies usually inherit their name. Entropies are called
spectral entropies when entropic functionals are applied to pmfs derived from the Fourier
spectrum representation of the process. When the densities are determined in the time-scale
domain by discrete wavelet transformations, the associated entropy functionals are called
wavelet entropies [29, 30]. If the pmf is obtained via the continuous wavelet transform, CWT,
the entropy is called continuous multiresolution entropy (CMqE) [31]. Wavelet Shannon
entropy, tantamount to computing a Shannon entropy functional on a pmf derived from
the wavelet variance, has found applications in event-related potentials in neuroelectrical
signals [32, 33], structural damage identification [34], segmentation of EEG signals [35],
characterization of complexity in random signals [36–38] among others. Entropic measures of
order q (hereafter q-entropies) generalize Shannon entropy and provide the flexibility of fine
tuning to a desired behaviour with the value of q. The pmf in time-scale domain for which all
entropies in this paper are computed is obtained by

pj =
1/Nj

∑
k F
(
dX
(
j, k
))

∑log2(N)
i=1

{
1/Ni

∑
k F
(
dX
(
j, k
))} , (3.1)

where F(·) represents the variance or second-order moment of the dX(j, k), Nj (resp., Ni)
stands for the total number of wavelet coefficients at scale j (resp., i), and N is the length
of the process. For signals with 1/f PSD, the so-called wavelet spectrum-based pmf is
determined by direct substitution of the wavelet spectrum of the process under study (see
Table 1) into (3.1), which results in

pj = 2(j−1)α
1 − 2α

1 − 2αM
, (3.2)
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whereM = log2(N). The density given in (3.2) represents the probability that the energy of
the scaling signal is located at scale j. The pmf of (3.2) can be used to compute numerous
information theoretic functionals such as entropies, Fisher information, and information
planes. Zunino and coworkers computed Shannon entropy functional on (3.2) and called it
wavelet entropy. Later explicit formulas for wavelet Rényi and Tsallis entropies were derived
and some applications suggested. Normalized Shannon entropy functional of scaling signals
is given by

Ĥ(p) = 1
log2(M)

{
α

1 − 2−α
− αM

1 − 2−αM
− log2

(
1 − 2α

1 − 2αM

)}
, (3.3)

where M = log2(N). Wavelet Rényi q-entropies, as in the case of Shannon entropies, are
extensive entropies in the sense that for any two independent random variables X1 and X2,
the joint entropy HR

q (X1, X2) = HR
q (X1) + HR

q (X2). For scaling signals, Rényi entropy func-

tional, ĤR
q (p) = 1/(1 − q)log2(

∑
j pj

q), results in

ĤR
q

(
p
)
=

q

1 − q

(

log2

(
1 − 2α

1 − 2αM

)
− 1
q
log2

(
1 − 2αqM

1 − 2αq

))

, (3.4)

where q ∈ R denotes the extensivity parameter. Tsallis q-entropies are nonextensive entropies
in the sense that the extensivity property no longer holds. For a pmf pj it is defined as

ĤT
q

(
p
)
= −

M∑

j=1

p
q

j lnq
(
pj
)
, (3.5)

where lnq(x) := (x1−q − 1)/(1 − q) is the q-logarithm function and q ∈ R the nonextensivity
parameter. Tsallis entropies provide a valuable and interesting tool for the analysis of systems
with long-range interactions, longmemories, and so forth. The application of Tsallis entropies
is vast, from the characterization of complexities in EEG signals [28] to the study of non-
linear systems [31]. Normalized Tsallis functional applied to (3.2) results in wavelet Tsallis
q-entropies which is given by

ĤT
q

(
p;α
)
= cM,q

{

1 −
(

1 − 2α

1 − 2αM

)q(1 − 2αqM

1 − 2αq

)}

(3.6)

= cM,q

{

1 −
(

sinh(α ln 2/2)
sinh(α ln 2M/2)

)q(sinh
(
αqM ln 2/2

)

sinh
(
αq ln 2/2

)

)}

(3.7)

= cM,q

⎧
⎪⎨

⎪⎩
1 − PM−1(2 cosh

(
αq ln 2/2

))

(
PM−1(2 cosh(α ln 2/2))

)q

⎫
⎪⎬

⎪⎭
, (3.8)
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Figure 2:Wavelet Rényi q-entropies of 1/f signals. Top left plot computed with q = 0.4, top right plot with
q = 1.1, bottom left plot with q = 4, and finally bottom right plot with q = 15.

where cM,q = 1/(1−M1−q) is a normalizing factor and PM−1(2 coshu) is a polynomial of order
M − 1, that is,

PM−1(·) = (2 coshu)M−1 − (M − 2)
1!

(2 coshu)M−3

+
(M − 3)(M − 4)

2!
(2 coshu)M−5 − · · · .

(3.9)

Figure 2 displays the wavelet Rényi q-entropies of scaling processes. Note that
independently of signal length, wavelet Rényi entropies display a bell-shaped form for these
processes. Parameter q stretches the bell-shaped form as q is varied. Parameter q has, in view
of these entropy planes, no effect on the form of the observed entropies as the bell-shaped
form is maintained. The maximum entropy is achieved when the scaling process is a pure
white noise (α = 0), and as the process becomes non-stationary their entropies decrease. The
form and behaviour of these entropies are similar as those observed in the literature [32] and
reflect the extensivity character of the entropy functionals. Note that both Shannon and Rényi
entropies describe appropriately the complexities associated to 1/f processes: maximum for
highly disordered systems and minimum for smooth signals. For further information on
wavelet entropy please refer to [30, 32].
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Figure 3:Wavelet Tsallis q-entropies of 1/f signals. Top left plot computed with q = 0.4, top right plot with
q = 0.95, bottom left plot with q = 5, and finally bottom right plot with q = 10.

Figure 3 illustrates the wavelet Tsallis q-entropies for scaling processes of parameter
α. Note that as long as q < 5, wavelet Tsallis q-entropies are identical as those observed in
wavelet Rényi q-entropies (i.e., they have the same bell-shaped form). As long as q ≥ 5,
the behaviour of wavelet Tsallis q-entropies changes and differs from that of Shannon and
Rényi. Wavelet Tsallis q-entropies, therefore, comprise the behaviour of wavelet Shannon and
Rényi and provide greater flexibility in describing the process. Observe that, unlike Rényi
entropies, Tsallis q-entropies allocate maximum (and constant) entropies to a set of scaling
processes. In addition, the set of scaling signals for which this constant behaviour is observed
is controlled by the nonextensivity parameter q of Tsallis entropies. The constant behaviour
observedmeans that wavelet Tsallis q-entropies regard some set of scaling processes as totally
random or disordered and, in some sense, randomizes the scaling signal under study. This
particular behaviour of wavelet Tsallis q-entropies is further explored in next section, and a
model for this is derived.

3.1. Sum-Cosh Window Behaviour of Wavelet Tsallis q-Entropies

Wavelet Tsallis q-entropies allocates constant entropies to a set of scaling processes and
varying entropies to the rest. This particular behaviour can be modelled by the theory of
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windowing or apodizing functions. This theory has been important for the design of digital
filters; however, in this paper it is used to model the observed wavelet Tsallis q entropies of
1/fα signals. As a matter of fact, (3.8) resembles in some sense the cosh window observed in
the work of Avci and Nacaroglu [39] and can be regarded as a sum-cosh window provided
ĤT

q (p;α) = ĤT
q (p;−α), limα→ 0ĤT

q (p;α) = 1, and limα→ bĤT
q (p;α) = 0 conditions are satisfied.

The symmetry condition (ĤT
q (p;α) = ĤT

q (p;−α)) is easily verified, and the limα→ 0ĤT
q (p;α) is

computed based on the observation that

μα =
(

1 − 2α

1 − 2αM

)q
=

(
−α ln 2 − (α ln 2)2/2! − · · ·

−αM ln 2 − (αM ln 2)2/2! − · · ·

)q

, (3.10)

which results in limα→ 0μα = M−q. A similar reasoning for the expression to the right of μα in
(3.6) results in

lim
α→ 0

ĤT
q

(
p;α
)
= cM,q

{
1 −
(
M−1

)q
M
}
= 1. (3.11)

Derivation of the second limit is performed by means of the asymptotic relation 1 − 2α ≈ −2α
for large α, consequently

lim
α→ b

ĤT
q

(
p;α
) ≈ cM,q

{

1 −
(

2α

2αM

)q(2αMq

2αq

)}

= 0, (3.12)

as b � 1. The above demonstrates that wavelet Tsallis q-entropies can be modelled by
sum-cosh windowing functions which in turn implies that for particular q, rectangular-like
behaviour can be observed. The quasirectangular behaviour implies that constant regions of
entropies are observed for a range of scaling processes and varying for the rest. The set of
scaling processes for which constant wavelet Tsallis q-entropies are observed is controlled by
the non-extensivity parameter q of Tsallis entropies. Figure 4 displays the shape of the wave-
let Tsallis q-entropies for fixed length and different values of the non-extensivity parameter.
For the cases q = 0.999 and q = 3, a bell-shaped form is observed which in some sense
is identical to the ones observed for wavelet Shannon and Rényi entropies. Note from the
figure that as q = 8, constant entropies are assigned to scaling processes in a symmetric range
of α. This quasirectangular form can be set up to allocate constant entropies to stationary
scaling processes and varying entropies to non-stationary ones. As a matter of fact, constant
wavelet Tsallis entropies can be obtained for stationary signals and varying entropies to non-
stationary ones as long as q ≈ 8. This behaviour is important since a potential application of
this feature is on the classification of scaling processes as stationary or non-stationary.

4. Classification of Scaling Signals

The classification of scaling signals as stationary or non-stationary has already been
recognized as an important and unresolved problem in many areas of signal analysis
[5, 12, 40–42]. Signal classification not only enhances the estimation process (i.e., estimation of
the scaling index α) but also provides a correct interpretation of the phenomena, which in turn
eases the application of a given technique in the process under study. Much of the literature
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Figure 4: Cosh-window modelling of wavelet Tsallis q-entropies. Variation of window form on q.

on self-similar, long-memory, and fractal processes lack a step of signal classification, the
parameters were estimated under the assumption of stationary, and therefore their results
remain questionable. The process of signal classification becomes harder as we approach the
boundary of stationarity and non-stationarity, that is, when α → 1. The reason for this is
that as α → 1, stationary signals incorporate some features of non-stationarity and viceversa.
Signal classification techniques often fail to distinguish fractal noises from motions within
this boundary. The signal classification phase is sometimes more straightforward in some
families of scaling signals than in others. For example, fBms and fGns are visually different,
and the classification is simpler than that for the case of PPLs which are more difficult to
classify. In this respect, any signal classification procedure must differentiate scaling signals
independently of signal family and also provide meaningful classifications in the boundary
α = 1. Classification of scaling signals has traditionally been accomplished by using standard
methodologies based on the PSD. PSD and PSD-based signal summation conversion (SSC)
were recently proposed as methodologies for distinguishing fractal noises and motions in
[5] by using synthesized fBms and fGns. In that work, fGns and fBms were generated in
the interval α ∈ (−1, 3) and with sufficiently large lengths. The present paper proposes a
methodology based onwavelet Tsallis q-entropies and its sum-coshwindow behaviour. In the
following, we briefly review current techniques employed to perform the signal classification
phase and describe the proposed methodology based on wavelet Tsallis q-entropies.

4.1. Power Spectral Density

Spectral density function (SDF) characterizes stationary random signals in frequency
domain. According to the work of Eke and coworkers [5, 41], SDF can be used to classify 1/fα
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Figure 5: Algorithms for classifying scaling signals as stationary or nonstationary. Leftmost diagram
displays the steps required in PSD, middle diagram the ones for SSC, and rightmost plot displays the
steps of the proposed technique based on wavelet Tsallis q-entropies.

signals based on the fact that the observed PSD of 1/f processes follows a power-law depend-
ence (SX(f) ∼ f−α). When the estimated parameter of power-law dependence (α̂) is less than
1 (α̂ < 1), the process is stationary; on the other hand if α̂ > 1, the process is non-stationary.
Signal classification in the SDF framework is therefore accomplished by first estimating
the SDF of the scaling process under study using some standard methodology (e.g.,
Periodogram), plot log(Sx(f)) versus f , fit a line, compute the slope which corresponds to
the estimated α̂, and finally based on the observed slope determine the nature of the process.
Authors in [5] reported on the classification properties of the SDF method using synthesized
signals of the fGn/fBm type. Eke and coauthors [5, 41] claimed that PSD performs satisfac-
torily when the process’ scaling parameter lies in the intervals −1 < α < 0.38 and 1.04 < α < 3
but misclassifies signals in the range 0.38 < α < 1.04. Because of this, they proposed
a methodology specially designed to enhance the classification of signals in the interval
α ∈ (−1, 3). Figure 5 displays the algorithm based on PSD to classify scaling signals.

4.2. Signal Summation Conversion

As stated in the previous section, PSD offers limited classification when the scaling process
studied has a scaling index lying in the interval α ∈ (0.38, 1.04). The work of Eke et al. [5]
not only identified this limitation but also proposed a solution based on the cumulative sum
operation. The technique, called signal summation conversion, is only necessary whenever
the estimated scaling index of the process lies in α ∈ (0.38, 1.04). The solution posed by
Eke was to classify the process in the non-stationarity domain by the use of some standard
non-stationarity technique. The use of the cumulative sum technique allowed the conversion
of a stationary process into a non-stationary one and also maintaining the non-stationarity
condition in a non-stationary process. Once the process to be classified is transformed to
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exhibit non-stationarity features, the following step is to estimate the Hurst index of this
process by using some standard technique, for example, bridge-detrended scaled-windowed
variance (bdSWV). Depending upon the estimated Hurst index obtained by bdSWV (ĤSWV),
a process is classified as stationary whenever ĤSWV < 0.8 and non-stationary when ĤSWV > 1.
If the estimated ĤSWV lies outside this interval, the scaling process is regarded as unclassi-
fiable. Eke and coworkers showed that the SSC enhances the classification observed in PSD
at the expense of higher computational time. Even though SSC enhanced the classification of
processes, many disadvantages can be identified in this technique. First, extended fGn cannot
be classified as stationary within this framework as its cumulative sum is still stationary; sec-
ondly, SSC is based on PSD, a technique which has traditionally been attached to stationary
signals. In addition, SSC has not been tested on signals displaying more complex behaviour
such as PPLs, and the signals used to perform the classification are long. Figure 5 displays
the algorithms for performing scaling signal classification in the PSD and SSC framework.

4.3. Wavelet Tsallis q-Entropies

Section 3 demonstrated that wavelet Tsallis q-entropies can be modelled by sum-cosh
apodizing functions which among other properties display constant regions of entropies and
regions of decreasing entropies (i.e., quasirectangular behaviour). The length of the constant
region, which usually lies in a symmetric range of the scaling index α, can be controlled by the
non-extensivity parameter q of Tsallis entropies. If the constant region of entropies lies in the
interval α ∈ (−1, 1), then, every stationary scaling process will present maximum wavelet
Tsallis entropy (H = 1). On the other hand if the process has a scaling index α outside
this range it will present fluctuations of entropy. The above suggest that wavelet Tsallis q-
entropies can be used to differentiate scaling signals as stationary or non-stationary based
on the observed entropies. If the estimated entropies are constant, then the scaling process is
stationary, otherwise it is non-stationary.

Figure 6 captures the rationale behind the signal classification procedure based on
wavelet Tsallis q-entropies. As long as q ≥ 5, constant regions of entropies are observed for
scaling signals with α < αcoff(q) and varying for α > αcoff(q). If αcoff(q) = 1, then classification
of fractional noises and motions can be accomplished, and when αcoff(q) = 3, classification
of fractional motions from extended fractional motions is accomplished. Therefore, wavelet
Tsallis q-entropies not only allows distinguishing stationary from non-stationary but also
non-stationary from non-stationary.

5. Methodology

In [5], a comparison of PSD and SSC was performed by using synthesized signals of length
N = 217. SSC was reported to present better classifications of fBms (as true fBms) and fGns
(as true fGns). The present paper extends the results reported in [5] to PPL signals, which
are known to present more complex behaviour than fBms and fGns, and proposes a novel
methodology for scaling signal classification based on wavelet Tsallis q-entropies. The paper
uses PPL signals with lengthN = 214, which are more realistic in the sense that many studies,
reported in the literature with measured data, claimed that the nature of the phenomena does
not permit to obtain higher signal lengths [6]. Also, estimation techniques often increase their
MSE for short-length signals. Therefore, the present study not only proposes a methodology
for classifying scaling processes as stationary or non-stationary but also compares the
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Figure 6: Dependence of the constant entropies on the nonextensivity parameter of Tsallis entropies.

techniques for signal classification in non-standard conditions (i.e., by using complex signals
with short lengths). PPL signals were synthesized by using the R package fractal, which
simulates signals using the circular embedding algorithm of Davies and Harte [43]. To test
the performance of each technique, PPL signals were generated in the range .01 < α < 1.99 in
steps of .01. For each α (in the range .01 < α < 1.99), 100 traces were simulated; therefore, a
total of 19900 traces were studied. The selection of the range: .01 < α < 1.99 is because of the
fact that techniques of signal classification often fail in the limit α → 1 and perform better
outside this range. SSC often considers a signal as unclassifiable; however, for the purposes
of comparison, an unclassifiable signal is regarded as misclassified in this paper. SSC was
implemented in R using the PSD algorithm of the fractal package. Wavelet entropy was
implemented in R (and also in MATLAB), and the classification of signals was based on fluc-
tuations of entropy (by computing wavelet entropy in sliding windows). To study the fluctu-
ations, subsets of the original scaling signal,X(t), were taken in sliding windows of the form:

X(m;w,Δ) = X(tk)Π
(
t −mΔ
w

− 1
2

)
, (5.1)

where m = 0, 1, 2, . . . mmax, Δ is the sliding factor, and Π(·) is the standard rectangular
function. Once the signals were classified, their results were summarized by plotting

{N(m; j
)
, j
}1.99
j=.01, (5.2)

where N(m; j) stand for the number of signals classified correctly for the technique m for
signals with scaling index j.
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Figure 7: Classification of correct power-law signals. Recall that α < 1 indicates the presence of a fractal
noise while α > 1 designates a non-stationary fractal motion. Left plot shows classification for PSDmethod,
middle plot for the so-called SSC (signal summation conversion), and right plot to the novel wavelet Tsallis
q-entropies-based method with q = 20.

6. Experimental Results

Figure 7 displays the results of the experimental study detailed (methodology) detailed in
previous section. Note that for PSD, stationary PPL signals are classified correctly (i.e., classi-
fied as stationary). This was expected, since as previously stated, PSD was primarily de-
signed to work for time-invariant (stationary) random signals. For non-stationary signals,
PSD classifies non-stationary signals as stationary, misclassifying every non-stationary PPL
process. PSD, therefore, do not provide reliable classifications of PPL signals, and it is not
recommended for use in a signal classification scheme. In [5], SSC was shown to enhance
the classification of scaling signals for the range α̂ ∈ (0.38, 1.04). Note, however, that SSC en-
hances the classification mostly for stationary signals. Moreover, SSC is only applicable as the
estimated scaling index lies in α̂ ∈ (0.38, 1.04), otherwise only the PSD is applied. Based on
this, it is expected to have a similar behaviour of classifications as the PSD for the SSC tech-
nique. Middle plot of Figure 7 displays the classifications of the SSC technique for PPL signals
of length N = 214. As expected, SSC presents identical behaviour as that of PSD and, as the
case of PSD, is not recommended as a signal classification tool for signals with PPL behaviour.
The results of PSD and those of SSC differ from those presented in [5]. Note, however, that
the signals studied in this paper are of different nature than those studied in [5]. First, the
signals studied in the work of Eke et al. [5] are fBms and fGns, which in some sense are more
easily classifiable since their smoothness properties are visually different. Finally, the length
of the signals studied in the work of Eke are longer than the length of the signals considered
in this paper. It is well known that as the length of the studied signals increases, the MSE
of the estimated α̂ decreases. Thus, the synthesized signals studied in this paper possess
not only higher complexities but also shorter length. Rightmost plot of Figure 7 presents the
classifications of PPL signals using the methodology proposed in this paper based on wave-
let Tsallis q-entropies. Note that the classifications of the proposed technique are better than
those observed in PSD and SSC. The proposed technique based on wavelet Tsallis q-entropies
classifies correctly stationary as well as non-stationary PPL signals and that this classification
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is somewhat unacceptable in the limit of α → 1. The technique based on wavelet Tsallis q-
entropies is fast enough and can also classify extended fGns from fGns and fBms from ex-
tended fBms. The classifications of signals with these characteristics are not supported by
either the PSD and SSC techniques. In performing the classifications with the technique
based on wavelet Tsallis entropies, the entropies were computed in sliding windows, and
the boundary of fluctuations was taken as μ = 3e − 09. The nonextensivity parameter q was
set to q = 10 but similar results are observed for q ≥ 10.

7. Conclusions

This paper presented a novel methodology for classifying scaling signals as stationary or
non-stationary based on wavelet Tsallis q-entropies. It was shown that the sum-cosh window
behaviour of wavelet Tsallis q-entropies allocated constant entropies to a set of scaling signals
and varying to the rest and that the length of the constant region is controlled by q, the
non-extensivity parameter of Tsallis entropies. It was also shown that by setting the constant
regions to the range of stationary scaling signals, the problem of signal classification can be
reduced to the observation of constant/nonconstant entropies. The classification properties
of the PSD and SSC were extended to signals with pure power-law behaviour with length
N = 214, and a comparison procedure was performed among PSD, SSC, and the technique
based on wavelet Tsallis q-entropy. The results not only confirm that the technique based on
wavelet Tsallis q-entropies provides meaningful classification but also outperforms PSD and
SSC techniques. The results presented in this paper are meaningful in many areas of scaling
signal analysis since many estimation/analysis results presented in the literature have been
performed without a phase of signal classification.
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