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This paper deals with the modeling of nonstationary time-frequency (TF) dispersive multipath fading channels for vehicle-to-
vehicle (V2V) communication systems. As a main contribution, the paper presents a novel geometry-based statistical channel
model that facilitates the analysis of the nonstationarities of V2V fading channels arising at a small-scale level due to the time-
varying nature of the propagation delays. This new geometrical channel model has been formulated following the principles of
plane wave propagation (PWP) and assuming that the transmitted signal reaches the receiver antenna through double interactions
with multiple interfering objects (IOs) randomly located in the propagation area. As a consequence of such interactions, the first-
order statistics of the channel model’s envelope are shown to follow a worse-than-Rayleigh distribution; specifically, they follow
a double-Rayleigh distribution. General expressions are derived for the envelope and phase distributions, four-dimensional (4D)
TF correlation function (TF-CF), and TF-dependent delay and Doppler profiles of the proposed channel model. Such expressions
are valid regardless of the underlying geometry of the propagation area. Furthermore, a closed-form solution of the 4D TF-CF is
presented for the particular case of the geometrical two-ring scatteringmodel.The obtained results provide new theoretical insights
into the correlation and spectral properties of small-scale nonstationary V2V double-Rayleigh fading channels.

1. Introduction

Terrestrial vehicle-to-vehicle (V2V) communication systems
are emerging as an enabling technology for a variety of new
wireless applications and services, such as information relay-
ing for mobile cellular networks [1] and peer-to-peer data
transmission for vehicular communications [2]. Some of the
most important applications of these systems target the pre-
vention of vehicular accidents and the optimization of traffic
flow. Such applications have caught the attention of the auto-
motive industry and different government bodies around the
world, who have become major promoters of the V2V
communications technology [3].

One of the main challenges in the design of V2V com-
munication systems is to develop a robust air interface that
supports delay sensitive applications under the constraints of
a rapidly changing propagation environment and a dynamic

network topology. To successfully design and optimize such
an air interface, a realistic reference model of the time-
frequency (TF) dispersive V2V fading channel is required.
This is of primary importance, since the performance of
the wireless communication systems is highly influenced by
the propagation environment. In addition to measurement-
based models, proper analytic channel models are needed
that provide insights into the physics of V2V radio reception
and, at the same time, that lend themselves to mathematical
and numerical system performance investigations.

Important advances in the analytical characterization
of fixed-to-mobile (F2M) multipath fading channels were
prompted by the emergence of the mobile cellular commu-
nication systems in the late 1970s. However, the modeling of
fading channels for V2V communications not only demands
more exhaustive research work, but also requires a shift of
paradigm, because some of the assumptions that are often
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invoked for the characterization of F2M channels are not
valid when the terminals at both ends of the radio link
are able to move at high speeds. For example, most of the
existing statistical models for F2M channels have been for-
mulated assuming the fulfillment of thewide-sense stationary
uncorrelated scattering (WSSUS) condition introduced by
Bello in [4] (e.g., see [5–7]). This assumption facilitates the
mathematical analysis of TF-dispersive channels, as it implies
that the channel’s statistics are simultaneously wide-sense
stationary (WSS) in the time and the frequency domains.
Nevertheless, recent empirical investigations carried out in
vehicular communication environments suggest that the
WSSUS condition is not valid forV2V channels [8].While the
nonstationary features of multipath wireless channels have
been a subject of analysis since the early days of the mobile
radio communications (e.g., see [4, 9]), the modeling of such
nonstationarities has predominantly been addressed from a
large-scale propagation perspective. Measured data obtained
independently in [10–12] demonstrates that the nonstation-
ary characteristics of V2V channels are also meaningful at a
small-scale level.

Empirical investigations have further shown that the
signal fading induced by V2V channels is more severe than
the one produced by F2M channels [13], which is typically
modeled by Rayleigh or Rice distributions. The exacerbation
of signal fading is not surprising if one considers that, in
a V2V communications system, the mobile terminals are
located at ground level. This scenario increases the chances
of receiving echoes of the transmitted signal that interact with
multiple interfering objects (IOs) on their way to the receiver
antenna. As a result of suchmultiple interactions, the received
multipath signal is subject to a form of cascaded fading that
ismodeled byworse-than-Rayleigh distributions [13, 14] (e.g.,
the double-Rayleigh [15] and double-Rice distributions [16]).

Notable contributions to the analytical characterization of
non-WSSUS V2V channels have recently been made in [17–
19] on the basis of the geometry-based statistical modeling
approach.The geometrical channel models proposed in these
papers assume the propagation of spherical waves to account
for the nonstationarities of V2V channels stemming from
small-scale propagation. In the spherical wave propagation
(SWP) framework, the angle of departure (AOD) and angle
of arrival (AOA) of the received multipath signals are deter-
mined by the instantaneous spatial position of the trans-
mitting and receiving mobile stations (MSs). The angular
statistics of the resulting channel models are therefore time-
dependent. This feature is particularly convenient for the
characterization of nonstationary small-scale channels but
renders the mathematical analysis of the channel’s statistics
a cumbersome task.

To facilitate the modeling and analysis of non-WSSUS
V2V channels, we recently proposed in [20–22] a novel
framework that builds instead on the principles of plane
wave propagation (PWP). Our proposal is well suited for
the analysis of V2V radio reception over small local areas
spanning a few tens of wavelengths, where a plane wave
approximation of themore realistic spherical electromagnetic
waves can be applied. For such propagation scenarios, the
angular statistics of the V2V channel can be modeled by

time-invariant distributions, which are more mathematically
tractable than their time-varying counterparts. The focus of
[20, 21] was on the characterization of nonstationary Rayleigh
fading channels for single-input single-output (SISO) and
multiple-input multiple-output (MIMO) V2V communica-
tion systems, respectively. In [21], the MSs are assumed to
move at constant speeds and on linear trajectories, whereas
the effects of acceleration and nonlinear motion are investi-
gated in [20] following a parallel approach to the TF analysis
techniques employed in [23]. On the other hand, in [22],
we apply our modeling framework to the characterization
of non-WSSUS SISO V2V channels that experience double-
Rayleigh fading.

In this paper, we complete our preliminary work pre-
sented in [22] by providing a detailed description and a thor-
ough statistical analysis of the proposed geometrical model
for non-WSSUS V2V double-Rayleigh fading channels. The
scope and depth of the work in [22] are expanded here as
follows:

(i) Important statistical quantities of the proposed chan-
nel model, such as the autocorrelation functions in
the time and frequency domains, as well as the
TF-dependent delay and Doppler profiles, were not
investigated in [22]. An in-depth analysis of these
statistical quantities is presented here.

(ii) Details on the derivations of the four-dimensional
(4D) TF correlation function (4D TF-CF) of the
proposed channel model were not presented in [22].
An outline of the derivations is given here in the
Appendix.

(iii) In [22], our discussion of the proposed channel
model’s stationary (nonstationary) characteristicswas
constrained to a single paragraph due to space limi-
tations. In this paper, we complement our discussion
with important additional remarks.

(iv) Finally, new numerical examples are presented in this
paper to illustrate our findings regarding the auto-
correlation, spectral, and stationary (nonstationary)
characteristics of the proposed geometry-based sta-
tistical model (GBSM) for non-WSSUS V2V double-
Rayleigh fading channels.

The remainder of the paper is organized as follows. Our
proposal for the geometrical modeling of nonstationary V2V
double-Rayleigh fading channels is presented in Section 2. In
Section 3, we derive general expressions for the envelope and
phase distributions, the 4D TF-CF, and the TF-dependent
delay and Doppler profiles of the proposed channel model.
It is worth pointing out that such expressions are valid
regardless of the underlying geometry of the propagation
area. In Section 4, we compute a closed-form solution of
the 4D TF-CF by considering the particular case of the
geometrical two-ring scattering model. Numerical examples
illustrating our theoretical findings are presented in Section 4.
Finally, our conclusions are given in Section 5.

Notation. The complex conjugate, the argument, and the
absolute value operations are denoted by (⋅)∗, arg{⋅}, and | ⋅ |,
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Figure 1: The reference propagation scenario at time 𝑡 = 𝑡0.

respectively. Vectors are written in bold face. The transpose
operation is denoted by (⋅)†, ‖ ⋅ ‖ stands for the Euclidean
norm, and the scalar product between two vectors z1 and
z2 is represented as ⟨z1, z2⟩. The operator 𝐸{⋅} designates
the statistical expectation. The set of positive real numbers
is denoted by R+, and the operator card(⋅) indicates set
cardinality.

2. The Proposed Geometrical Model for
Non-WSSUS V2V Channels

2.1. Geometrical Modeling of the Propagation Scenario. The
aim of this paper is to model the nonstationarities of TF-
dispersive V2V channels stemming from small-scale prop-
agation. We are particularly interested in characterizing
the nonstationarities arising from the time-varying nature
of the propagation delays. For that purpose, we consider
a SISO V2V communication system and assume that the
transmitted signal reaches the receiver antenna through a
double interaction with nonmoving IOs randomly located
in the propagation environment. Specifically, we assume that
the transmitted signal interacts first with a set S�푇 of 𝐿 IOs
(card(S�푇) = 𝐿) that are located in the surroundings of the
transmittingMS (𝑇�푋).Then, the 𝐿 scattered signals that result
from such an interaction impinge on a second setS�푅 of𝑀 IOs
(card(S�푅) = 𝑀) that lie in the vicinity of the receiving MS
(𝑅�푋). Thereby, a total of 𝐿 × 𝑀 double-scattered waves are
produced, which combine with one another at the receiver
antenna. Figure 1 shows an illustration of the propagation
scenario under consideration at the time instant 𝑡 = 𝑡0 when
the MSs start to communicate with each other.

In Figure 1, the 𝐿 IOs in the set S�푇 are represented by
black dots, whereas white dots stand for the 𝑀 IOs in S�푅.
We denote the 𝑙th IO in S�푘 by 𝑆�푘�푙 , for 𝑙 ∈ {1, 2, . . . , card(S�푘)},
and 𝑘 ∈ {𝑇, 𝑅}. The positions of 𝑇�푋 and 𝑅�푋 at the time when
the communications begin (i.e., at 𝑡 = 𝑡0) are denoted by the
time-invariant vectorsO�푇 and O�푅. The distance between O�푇
and O�푅 is given by 𝐷. The velocity vectors of 𝑇�푋 and 𝑅�푋 are
represented by k�푇 and k�푅, respectively.We assume that𝑇�푋 and𝑅�푋 move at constant speeds and on linear trajectories.

The time-invariant vectors p̂�푘�푙 , for 𝑙 ∈ {1, 2, . . . , card(S�푘)}
and 𝑘 ∈ {𝑇, 𝑅}, indicate the position of the 𝑙th IO 𝑆�푘�푙 in
S�푘, with respect to the fixed reference point O�푘. In addition,

the instantaneous position of the ℓth IO 𝑆�푇ℓ in S�푇, as seen
from the perspective of themoving𝑇�푋, can be represented by
the time-varying vector p�푇ℓ (𝑡). Analogously, the time-varying
vector p�푅�푚(𝑡) indicates the instantaneous position of the 𝑚th
fixed IO 𝑆�푅�푚 in S�푅, as seen by the moving 𝑅�푋. Regardless of
the geometrical configuration of the propagation scenario, we
can express these two vectors as

p�푘�푙 (𝑡) = p̂�푘�푙 − 𝑡 ⋅ k�푘 (1)

for 𝑘 ∈ {𝑇, 𝑅} and 𝑙 ∈ {1, 2, . . . , card(S�푘)}. On the other hand,
the position of the𝑚th nonmoving IO 𝑆�푅�푚 inS�푅 relative to that
of the ℓth IO 𝑆�푇ℓ in S�푇 is given by the time-invariant vector

p�푆ℓ,�푚 = D − p̂�푇ℓ + p̂�푅�푚 (2)

for ℓ ∈ {1, 2, . . . , card(S�푇)} and 𝑚 ∈ {1, 2, . . . , card(S�푅)},
whereD = O�푅−O�푇 and ‖D‖ = 𝐷.The time-invariant vectors
u�푇ℓ , u
�푆
ℓ,�푚, and u

�푅
�푚 are unit vectors which point at the direction

of propagation of the waves that travel from 𝑇�푋 to 𝑆�푇ℓ , from𝑆�푇ℓ to 𝑆�푅�푚, and from 𝑆�푅�푚 to 𝑅�푋, respectively. Note that these
vectors do not need to point exactly towards 𝑆�푇ℓ , 𝑆�푅�푚, and O�푅,
if we assume (as we do in this paper) the propagation of plane
waves. If, on the other hand, we consider the propagation
of spherical waves, then such vectors should point exactly
towards the aforementioned observation points. In fact, in
the case of SWP, u�푇ℓ and u�푅�푚 should be modeled as time-
varying vectors, since the position of the observer relative to
the source changes over time because 𝑇�푋 and 𝑅�푋 are moving
[18].

Geometrical configurations of the propagation scenario
similar to the one shown in Figure 1 have already been
considered in other papers for modeling SISO and MIMO
V2V fading channels (e.g., see [24–26]). However, the relative
positions among the MSs and the IOs are characterized in
this paper following a vector framework that allows capturing
the temporal dynamics of the channel in a simple and
compact manner. In contrast, such relative positions are
typically modeled in the state of the art by a framework
of time-invariant scalar quantities (angles and distances)
that provide a less flexible description of the propagation
scenario’s temporal dynamics. Capitalizing on the flexibility
of the vector framework presented here, we propose in the
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following subsection a general model for the channel impulse
response (CIR) ofV2V fading channels that is valid regardless
of the geometrical configuration of the propagation area, as
long as the plane wave model applies and the transmitted
signal arrives at 𝑅�푋 via a double interaction with IOs.

2.2. Mathematical Model of the Channel Impulse Response.
We define the small-scale CIR in the equivalent baseband at
time 𝑡 due to an impulse applied 𝜏 seconds in the past by the
superposition of 𝐿 ×𝑀 plane waves as follows:

ℎ (𝑡; 𝜏) ≜ Π�푇0 (𝑡 − 𝑡0) �퐿∑
ℓ=1

�푀∑
�푚=1

𝑔�푇ℓ 𝑔�푅�푚
⋅ exp {𝑗 [𝜃0 − 𝜃�푇ℓ − 𝜃�푅�푚 − 𝜗ℓ,�푚 (𝑡)]}
⋅ 𝛿 (𝜏 − 𝜏ℓ,�푚 (𝑡)) .

(3)

In (3), 𝑗2 = −1; 𝜃0 is the initial phase of the transmitted signal;𝑔�푘�푙 and 𝜃�푘�푙 stand for the gain and phase shift, respectively,
introduced by the interaction of the transmitted signal with
the 𝑙th IO 𝑆�푘�푙 in S�푘, for 𝑙 ∈ {1, 2, . . . , card(S�푘)} and 𝑘 ∈ {𝑇, 𝑅}.
The Dirac delta function is denoted by 𝛿(⋅), and

Π�푇0 (𝑡 − 𝑡0) ≜ {{{
1, 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇0
0, otherwise

(4)

is a rectangular windowing function introduced as ameans to
limit the length of the CIR ℎ(𝑡; 𝜏) within an interval of length𝑇0 inside of which the large-scale variations of the channel are
negligible, and the plane wave approximation is reasonably
justified. For simplicity, and without loss of generality, we will
henceforth assume that 𝑡0 = 0.

The time-varying parameters 𝜏ℓ,�푚(𝑡) and 𝜗ℓ,�푚(𝑡) stand
for the instantaneous propagation delay and path-length
dependent phase rotation, respectively, of the multipath
signal that arrives at 𝑅�푋 via the interaction with the IOs 𝑆�푇ℓ
and 𝑆�푅�푚. These two parameters are related to each other by

𝜗ℓ,�푚 (𝑡) = 2𝜋𝑓�푐𝜏ℓ,�푚 (𝑡) , (5)

where 𝑓�푐 = 𝐶�푙/𝜆 is the carrier frequency, 𝐶�푙 denotes the
speed of light, and 𝜆 is the transmitted signal’s wavelength.
We model the propagation delays as

𝜏ℓ,�푚 (𝑡) = ⟨p�푇ℓ (𝑡) , u�푇ℓ ⟩ + ⟨p�푆ℓ,�푚, u�푆ℓ,�푚⟩ − ⟨p�푅�푚 (𝑡) , u�푅�푚⟩𝐶�푙 . (6)

The sum of scalar products at the right-hand side of (6)
provides the path length of the plane wave that travels from𝑇�푋 to 𝑅�푋 via 𝑆�푇ℓ and 𝑆�푅�푚 [27]. The path length is computed in
(6) by considering the instantaneous position of the moving𝑇�푋 and 𝑅�푋, which is accounted for by the time-varying
position vectors p�푇ℓ (𝑡) and p�푅�푚(𝑡). Equation (6) therefore
allows modeling the time-varying nature of the propagation
delays. This is a salient feature of our proposal, because to
the best of our knowledge, the GBSMs for V2V channels

that have been proposed under similar considerations (i.e., by
assuming a double interaction with IOs and the propagation
of plane waves) do not take into account the temporal
dynamics of the propagation delays (see, e.g., [24–26]). Such
geometrical channel models define the propagation delays
as time-invariant quantities 𝜏ℓ,�푚 that depend only on the
position of𝑇�푋 and𝑅�푋 at time 𝑡 = 0. (When the propagation of
plane waves is assumed, the propagation delays are modeled
in the state of the art as 𝜏ℓ,�푚 = [⟨p̂�푇ℓ , u�푇ℓ ⟩ + ⟨p�푆ℓ,�푚, u�푆ℓ,�푚⟩ −⟨p̂�푅ℓ , u�푅�푚⟩]/𝐶�푙, ∀𝑚.)

From (1), and assuming that the unit vectors u�푇ℓ , u
�푆
ℓ,�푚, and

u�푅�푚 are collinear with the time-invariant vectors p̂�푇ℓ , p
�푆
ℓ,�푚, and

p̂�푅�푚, respectively, in such a way that

⟨p̂�푇ℓ , u�푇ℓ ⟩ = 󵄩󵄩󵄩󵄩󵄩p̂�푇ℓ 󵄩󵄩󵄩󵄩󵄩 (7)

⟨p�푆ℓ,�푚, u�푆ℓ,�푚⟩ = 󵄩󵄩󵄩󵄩󵄩p�푆ℓ,�푚󵄩󵄩󵄩󵄩󵄩 (8)

⟨p̂�푅�푚, u�푅�푚⟩ = − 󵄩󵄩󵄩󵄩󵄩p̂�푅�푚󵄩󵄩󵄩󵄩󵄩 , (9)

we have

⟨p�푇ℓ (𝑡) , u�푇ℓ ⟩ = 󵄩󵄩󵄩󵄩󵄩p̂�푇ℓ 󵄩󵄩󵄩󵄩󵄩 − 𝑡 ⟨k�푇, u�푇ℓ ⟩ (10)

⟨p�푆ℓ,�푚, u�푆ℓ,�푚⟩ = 󵄩󵄩󵄩󵄩󵄩p�푆ℓ,�푚󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩D − p̂�푇ℓ + p̂�푅�푚
󵄩󵄩󵄩󵄩󵄩 (11)

⟨p�푅�푚 (𝑡) , u�푅�푚⟩ = − 󵄩󵄩󵄩󵄩󵄩p̂�푅�푚󵄩󵄩󵄩󵄩󵄩 − 𝑡 ⟨k�푅, u�푅�푚⟩ . (12)

Thereby, the propagation delays 𝜏ℓ,�푚(𝑡) in (6) can be written
as

𝜏ℓ,�푚 (𝑡) =
󵄩󵄩󵄩󵄩󵄩p̂�푇ℓ 󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩p�푆ℓ,�푚󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩p̂�푅�푚󵄩󵄩󵄩󵄩󵄩𝐶�푙 − 𝑡𝑓�퐷ℓ,�푚𝑓�푐 , (13)

where

𝑓�퐷ℓ,�푚 = 𝑓�푇ℓ + 𝑓�푅�푚 (14)

is a Doppler frequency shift due to the combined movement
of 𝑇�푋 and 𝑅�푋, and

𝑓�푇ℓ = ⟨k�푇, u�푇ℓ ⟩𝜆 (15)

𝑓�푅�푚 = −⟨k�푅, u�푅�푚⟩𝜆 . (16)

It is worth highlighting that the channel modeling frame-
work defined by (3)–(16) is not restricted to a particular
geometrical arrangement of the IOs’ positions. Moreover,
the proposed framework is valid for both two-dimensional
(2D) and three-dimensional (3D) propagation scenarios, as
it applies regardless of whether the vectors introduced in
Figure 1 are defined in 2D or 3D spaces.
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3. Statistical Properties of the Proposed
Non-WSSUS V2V Channel Model

3.1. Considerations. In this section, we analyze the first-order
(FO) statistics, the correlation properties, and the spectral
characteristics of the proposed GBSM for V2V channels. To
reduce the number of variables in our analysis, wewill restrict
our attention to a 2D propagation scenario. We point out,
however, that the extension with respect to 3D propagation
is straightforward. In addition, we will make the following
considerations:

(i) The gains 𝑔�푘�푙 in (3) are statistically independent,
although not necessarily identically distributed, pos-
itive random variables (r.v.), each having a prob-
ability density function (PDF) 𝑝�푔

𝑙
𝑘
(𝑐), for 𝑙 ∈{1, 2, . . . , card(S�푘)}, 𝑘 ∈ {𝑇, 𝑅}, and 𝑐 ≥ 0.

(ii) The phases 𝜃�푘�푙 , 𝑙 ∈ {1, 2, . . . , card(S�푘)}, 𝑘 ∈ {𝑇, 𝑅},
are statistically independent r.v. uniformly distributed
over [−𝜋, 𝜋).

(iii) The direction of the time-invariant position vector p̂�푇ℓ
is modeled by a random angle 𝜙�푇ℓ characterized by a
circular PDF 𝑝�푇�휙 (𝜙�푇), for all ℓ, and 𝜙�푇 ∈ [−𝜋, 𝜋). Due
to the collinearity between p̂�푇ℓ and uℓ (see (7)), 𝜙�푇ℓ
can be identified as the AOD of the plane wave that
interacts with the ℓth IO 𝑆�푇ℓ in S�푇.

(iv) The r.v. 𝜙�푅�푚 describes the direction of the time-
invariant position vector p̂�푅�푚 and is characterized by
a circular PDF 𝑝�푅�휙 (𝜙�푅), for all ℓ, and 𝜙�푅 ∈ [−𝜋, 𝜋).
Due to the collinearity between p̂�푅�푚 and u�푚 (see (9)),
we can refer to 𝜙�푅�푚 as the AOA of the 𝑚th multipath
signal that arrives at 𝑅�푋 through the interaction with
the𝑚th IO 𝑆�푅�푚 in S�푅.

(v) The time-invariant vectors p̂�푇ℓ and p̂
�푅
�푚 havemagnitude

modeled by functions of 𝜙�푇ℓ and 𝜙�푅�푚, respectively; that
is,

󵄩󵄩󵄩󵄩󵄩p̂�푘�푙 󵄩󵄩󵄩󵄩󵄩 = 𝐺�푘 (𝜙�푙) , 𝐺�푘 : [−𝜋, 𝜋) 󳨃󳨀→ R
+ (17)

for 𝑙 ∈ {1, 2, . . . , card{S�푘}} and 𝑘 ∈ {𝑇, 𝑅}.
(vi) The aforementioned gains, phases, AODs, and AOAs

are mutually independent r.v.

Assumptions (i)–(iv) and (vi) are customary in the
state of the art, but the one introduced in (v) is not. This
latter assumption provides a generic description of the IOs’
position and is introduced in this paper with the purpose
of obtaining insights into the channel model’s statistics that
are not limited to a specific geometrical configuration of the
propagation area. The fact that the magnitude of p̂�푇ℓ and p̂�푅�푚
is modeled as functions of 𝜙�푇ℓ and 𝜙�푅�푚 implies that the IOs
are located on the contour of two surfaces. The shape of such
surfaces will be determined by the functions 𝐺�푇 and 𝐺�푅.

3.2. First-Order Statistical Analysis. The instantaneous mean
value and average power of a doubly dispersive V2V fading
channel are TF-varying quantities given as 𝑚ℎ(𝑡; 𝑓) ≜𝐸{𝐻(𝑡; 𝑓)} and 𝑃ℎ(𝑡; 𝑓) ≜ 𝐸{|𝐻(𝑡; 𝑓)|2}, where 𝐻(𝑡; 𝑓) ≜∫∞
−∞

ℎ(𝑡; 𝜏) exp{−𝑗2𝜋𝑓𝜏}𝑑𝜏 is the channel transfer function.
By computing the Fourier transform of the CIR in (3) with
respect to 𝜏, we find that

𝐻(𝑡; 𝑓) = Π�푇0 (𝑡)
�퐿∑
ℓ=1

�푀∑
�푚=1

𝑔�푇ℓ 𝑔�푅�푚 exp {𝑗 [𝜃0 − 𝜃�푇ℓ − 𝜃�푅�푚]}
⋅ exp {−𝑗2𝜋 (𝑓�푐 + 𝑓) 𝜏ℓ,�푚 (𝑡)} .

(18)

Under Assumptions (i)–(vi), we find 𝑚ℎ(𝑡; 𝑓) = 0 and𝑃ℎ(𝑡; 𝑓) = 𝜎�퐻 = 𝜁�푇𝜁�푅, for 𝑡 ∈ [0, 𝑇0], where
𝜁�푘 =

card{S𝑘}∑
�푙=1

𝐸 {󵄨󵄨󵄨󵄨󵄨𝑔�푘�푙 󵄨󵄨󵄨󵄨󵄨2} > 0, for 𝑘 ∈ {𝑇, 𝑅} . (19)

The previous equation indicates that the average power of
the channel is just a cumulus of the average powers of
the received multipath signal’s components (as was to be
expected). This equation also shows that the channel’s large-
scale variations are not taken into account by the model in
(18), as the instantaneous average power of 𝐻(𝑡; 𝑓) is a TF-
invariant quantity for 𝑡 ∈ [0, 𝑇0]. We have intentionally
neglected such variations to focus the spotlight of our work
on the nonstationarities of V2V channels arising from the
time-varying nature of the propagation delays. However, the
large-scale variations can easily be incorporated, for example,
by modeling the gains as random functions of time (i.e.,
stochastic processes)𝑔�푘�푙 (𝑡), 𝑙 ∈ {1, 2, . . . , card(S�푘)}, 𝑘 ∈ {𝑇, 𝑅},
each having a time-varying average power.

The envelope and the phase of 𝐻(𝑡; 𝑓) are also TF-
varying quantities given by Ξ(𝑡, 𝑓) ≜ |𝐻(𝑡; 𝑓)| and Ψ(𝑡, 𝑓) ≜
arg{𝐻(𝑡; 𝑓)}. The computation of the distributions of Ξ(𝑡, 𝑓)
andΨ(𝑡, 𝑓) is not a trivial task, because the term ‖p�푆ℓ,�푚‖ in (13)
is a nonlinear transformation of the random vectors p̂�푇ℓ and
p̂�푅�푚 (see (11)). However, if the condition𝐷 ≫ max{‖p̂�푇ℓ ‖, ‖p̂�푅�푚‖}
holds for all ℓ,𝑚, then this transformation becomes linear
and equal to ‖p�푆ℓ,�푚‖ ≈ 𝐷�푇ℓ + 𝐷�푅�푚, where 𝐷�푘�푙 = 𝐷/2 +
𝑞�푘⟨D, p̂�푘�푙 ⟩/𝐷, for 𝑙 ∈ {1, 2, . . . , card{S�푘}}, 𝑘 ∈ {𝑇, 𝑅}, and

𝑞�푘 = {{{
−1, if 𝑘 = 𝑇
1, if 𝑘 = 𝑅. (20)

With this simplification, the FO PDF of Ξ(𝑡, 𝑓) can be
computed following the procedures presented in [28, 29].
Thereby, the FO PDF of Ξ(𝑡, 𝑓) is given by

𝑝Ξ (𝑡, 𝑓; 𝜉) = (2𝜋)4 𝜉∫∞
−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝑤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ ∫∞
0

[ �퐿∏
ℓ=1

∫∞
0

𝑝�푔𝑇
ℓ

(𝑐�푇ℓ ) 𝐽0 (2𝜋𝑐�푇ℓ 𝑥�푇) 𝑑𝑐�푇ℓ ]
⋅ 𝐽0 (2𝜋𝑥�푇𝑤) 𝑥�푇𝑑𝑥�푇
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⋅ ∫∞
0

[ �푀∏
�푚=1

∫∞
0

𝑝�푔𝑅
𝑚
(𝑐�푅�푚) 𝐽0 (2𝜋𝑐�푅�푚𝑥�푅) 𝑑𝑐�푅�푚]

⋅ 𝐽0 (2𝜋𝑥�푅𝜉𝑤 )𝑥�푅 𝑑𝑥�푅 𝑑𝑤
(21)

for 𝜉 ≥ 0 and 𝑡 ∈ [0, 𝑇0], where 𝐽0(⋅) is the Bessel function
of the first kind and zeroth order. Analogously, the PDF ofΨ(𝑡, 𝑓) is given as

𝑝Ψ (𝑡, 𝑓; 𝜓) = 12𝜋 , 0 < 𝜓 ≤ 2𝜋, 𝑡 ∈ [0, 𝑇0] . (22)

The details on the derivations are omitted for reasons of
brevity, but an outline can be found in [30].

We can observe from (21) and (22) thatΞ(𝑡, 𝑓) andΨ(𝑡, 𝑓)
are FO-stationary random processes, as their PDFs 𝑝Ξ(𝑡, 𝑓; 𝜉)
and𝑝Ψ(𝑡, 𝑓; 𝜓) do not change over time and frequency within
the relevant interval 𝑡 ∈ [0, 𝑇0]. This feature indicates that
the nonstationary characteristics of the proposed channel
model—if any—are not caused by large-scale factors, such as
shadowing or path loss, or by gross changes in the location
of the IOs, such as the appearance and disappearance of
IOs. We note again that the influence of such large-scale
factors has intentionally been neglected in this paper to place
emphasis on the nonstationarities caused by the time-varying
propagation delays.

Unlike the PDF of the phase Ψ(𝑡, 𝑓), which does not
depend on the number of multipath components 𝐿 × 𝑀,
the PDF of the envelope Ξ(𝑡, 𝑓) is highly influenced by the

values of 𝐿 and𝑀. Nevertheless, if the gains 𝑔�푘�푙 are Rayleigh
distributed r.v., that is, if

𝑝�푔
𝑙
𝑘
(𝑐) = 2𝑐

(𝜌�푘
�푙
)2 exp{−

𝑐2
(𝜌�푘
�푙
)2} , 𝑐 ≥ 0, (23)

for 𝑙 ∈ {1, 2, . . . , card(S�푘)} and 𝑘 ∈ {𝑇, 𝑅}, where the parame-
ters𝜌�푘�푙 control the dispersion of theRayleigh distribution, and
they are not necessarily equal to each other, then the PDF in
(21) can be simplified to

𝑝Ξ (𝜉) = 4𝜉𝜎�퐻𝐾0 (
2𝜉𝜎�퐻) , 𝜉 ≥ 0, (24)

for 𝑡 ∈ [0, 𝑇0], where 𝐾0 is the modified Bessel function
of the second kind and zeroth order (see [30] for details on
the derivation of (24)). The PDF in (24) is known as the
double-Rayleigh distribution [13].The same result is obtained
regardless of the distribution of the gains 𝑔�푘�푙 if the value of 𝐿
is large (infinitely large in theory).

3.3. Four-Dimensional TF-CF. For the analysis of the corre-
lation properties of 𝐻(𝑡; 𝑓), we will consider the following
definition of the 4D TF-CF given in [31, Eq. (3b)]:

𝑅�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) ≜ 𝐸 {𝐻∗ (𝑡 − Δ𝑡; 𝑓)𝐻 (𝑡; 𝑓 + Δ𝑓)} . (25)

Starting from (18) and (25) and assuming that 𝑡0 = 0, we show
in Appendix A that

𝑅�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓)
= 𝜎�퐻Υ (𝑡, Δ𝑡) 𝐸{exp{𝑗2𝜋[Δ𝑡𝑓�퐷 (𝜙�푇, 𝜙�푅) (𝑓�푐 + 𝑓𝑓�푐 ) − Δ𝑓(𝐺�푇 (𝜙�푇) + 𝐺�푆 (𝜙�푇, 𝜙�푅) + 𝐺�푅 (𝜙�푅)𝐶�푙 − 𝑡𝑓�퐷 (𝜙�푇, 𝜙�푅)𝑓�푐 )]}} , (26)

where Υ(𝑡, Δ𝑡) = Π�푇0(𝑡)Π�푇0(𝑡 − Δ𝑡), while 𝜙�푘 is an arbitrary
r.v. in {𝜙�푘1 , 𝜙�푘2 , . . . , 𝜙�푘card{S𝑘}}, 𝑘 ∈ {𝑇, 𝑅}, and

𝑓�퐷 (𝜙�푇, 𝜙�푅) = 𝑓�푇 (𝜙�푇) + 𝑓�푅 (𝜙�푅) . (27)

The Doppler frequencies 𝑓�푇(𝜙�푇) and 𝑓�푅(𝜙�푅) are equal to

𝑓�푘 (𝜙�푘) = 𝑓�푘max cos (𝜙�푘 − 𝛾�푘) , 𝑘 ∈ {𝑇, 𝑅} , (28)

where 𝛾�푘 is the angle of the velocity vector k�푘, for 𝑘 ∈ {𝑇, 𝑅},𝑓�푘max = ]�푘/𝜆, with ]�푘 denoting the speed of 𝑇�푋 (when 𝑘 = 𝑇)
and𝑅�푋 (when 𝑘 = 𝑅). In turn, the function𝐺�푆(𝜙�푇, 𝜙�푅) in (26)
is given as

𝐺�푆 (𝜙�푇, 𝜙�푅)
= 󵄩󵄩󵄩󵄩D − 𝐺�푇 (𝜙�푇) u�푇 (𝜙�푇) + 𝐺�푅 (𝜙�푅) u�푅 (𝜙�푅)󵄩󵄩󵄩󵄩 , (29)

where u�푘(𝜙�푘) is a unit vector that points at the direction
specified by 𝜙�푘, for 𝑘 ∈ {𝑇, 𝑅}. Invoking the expected value
theorem, we can express 𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓) as

𝑅�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) = 𝜎�퐻Υ (𝑡, Δ𝑡)
⋅ ∫�휋
−�휋

∫�휋
−�휋

exp{𝑗2𝜋[Δ𝑡𝑓�퐷 (𝜙�푇, 𝜙�푅) (𝑓�푐 + 𝑓𝑓�푐 ) − Δ𝑓(𝐺�푇 (𝜙�푇) + 𝐺�푆 (𝜙�푇, 𝜙�푅) + 𝐺�푅 (𝜙�푅)𝐶�푙 − 𝑡𝑓�퐷 (𝜙�푇, 𝜙�푅)𝑓�푐 )]}𝑝�푇�휙 (𝜙�푇)
⋅ 𝑝�푅�휙 (𝜙�푅) 𝑑𝜙�푅 𝑑𝜙�푇.

(30)
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The result in (30) can be simplified to the product of two line
integrals if the condition 𝐷 ≫ max{𝐺�푇(𝜙�푇), 𝐺�푅(𝜙�푅)} holds.
Under this condition,

𝐺�푆 (𝜙�푇, 𝜙�푅) ≈ 𝐷�푇 (𝜙�푇) + 𝐷�푅 (𝜙�푅) , (31)

where

𝐷�푘 (𝜙�푘) = 𝐷2 + 𝑞�푘𝐺�푘 (𝜙�푘) ⟨D, u�푘 (𝜙�푘)⟩𝐷 , 𝑘 ∈ {𝑇, 𝑅} . (32)

Thereby, we have

𝑅�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) ≈ 𝑅�푇�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) 𝑅�푅�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) (33)

with

𝑅�푘�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) = 𝜁kΥ (𝑡, Δ𝑡)
⋅ ∫�휋
−�휋

exp{𝑗2𝜋[Δ𝑡𝑓�푘 (𝜙�푘) (𝑓�푐 + 𝑓𝑓�푐 )
− Δ𝑓(𝐺�푘 (𝜙�푘) + 𝐷�푘 (𝜙�푘)𝐶�푙 − 𝑡𝑓�푘 (𝜙�푘)𝑓�푐 )]}
⋅ 𝑝�푘�휙 (𝜙�푘) 𝑑𝜙�푘, 𝑘 ∈ {𝑇, 𝑅} .

(34)

Equations (33) and (34) show that the 4D TF-CF of the
proposed channel model can be factorized as the Kronecker
product (tensor) of two different TF-CFs, one due to the
signal’s dispersion at the transmitter side (𝑅�푇�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓))
and the other to the dispersion at the receiver side
(𝑅�푅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓)). This is not a novel result, nevertheless,
as it has been shown in previous papers that the channel’s
correlation function can be expressed by the Kronecker
product if the transmitted signal arrives at the receiver via
double interactions with IOs [32, 33]. However, to the best of
the authors’ knowledge, the GBSMs that have been proposed
for doubly and triply selective V2V channels assuming the
propagation of plane waves and a double interaction with IOs
fulfill the WSSUS condition by design [24–26]. In contrast,
we can observe from (26), (30), (33), and (34) that the
proposed channel model is a non-WSSUS random process,
because its 4D TF-CF is a TF-varying function, meaning
that 𝑅�퐻(𝑡1, 𝑓1; Δ𝑡, Δ𝑓) ̸= 𝑅�퐻(𝑡2, 𝑓2; Δ𝑡, Δ𝑓) for different
observation instants (𝑡1, 𝑓1) and (𝑡2, 𝑓2). We recall that a TF-
dispersive channel is said to fulfill the WSSUS condition
if its mean value is a constant, and its TF-CF is invariant
over the time 𝑡 and the frequency 𝑓 variables, that is, if

𝑅�퐻(𝑡1, 𝑓1; Δ𝑡, Δ𝑓) = 𝑅�퐻(𝑡2, 𝑓2; Δ𝑡, Δ𝑓), for (𝑡1, 𝑓1) ̸= (𝑡2, 𝑓2)
[5, 34]. In addition, we recall that the fulfillment of the
WSSUS condition implies that the channel is simultaneously
WSS in the time and the frequency domains [5].

The nonstationary features of our channel model are
noteworthy because our modeling framework does not con-
sider macroscopic (large-scale) or microscopic (small-scale)
factors that are already well-known sources of nonstation-
arities, such as path loss, shadowing, the appearance and
disappearance of IOs, or time-varying AODs and AOAs.
The nonstationarities of the channel model defined by (3)
stem from the propagation delays’ temporal variations. This
microscopic source of nonstationarities has passed practically
unnoticed in the literature, and its analysis has therefore
received little attention.

Equation (30) shows that the time dependence of𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓) is given by the factor 𝑡 ⋅ Δ𝑓 ⋅ 𝑓�퐷(𝜙�푇, 𝜙�푅)/𝑓�푐,
whereas its frequency dependence is given by 𝑓 ⋅ Δ𝑡 ⋅𝑓�퐷(𝜙�푇, 𝜙�푅)/𝑓�푐. These two factors must be equal to zero in
order for the proposed channel model to be WSS in both
the time 𝑡 and the frequency 𝑓 variables (i.e., to enforce the
WSSUS condition). Hence, this condition can only be met if
the Doppler frequency 𝑓�퐷(𝜙�푇, 𝜙�푅) is equal to zero, meaning
that the channel is static. Nevertheless, a static channel model
is of little relevance for the analysis of V2V communication
systems.

While the proposed channel model does not fulfill the
WSSUS condition, it is worth noting that 𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓)
becomes a time-independent function over the observation
region defined by Υ(𝑡, Δ𝑡) if we make Δ𝑓 = 0. For that
particular case, 𝑅�퐻(𝑡, 𝑓; Δ𝑡; Δ𝑓)|Δ�푓=0 = Υ(𝑡, Δ𝑡)𝑇�퐻(𝑓; Δ𝑡),
where 𝑇�퐻(𝑓; Δ𝑡) is a frequency-varying time correlation
function (TCF) given as

𝑇�퐻 (𝑓; Δ𝑡)
= 𝜎�퐻∫�휋

−�휋
∫�휋
−�휋

exp{𝑗2𝜋Δ𝑡𝑓�퐷 (𝜙�푇, 𝜙�푅) (𝑓�푐 + 𝑓𝑓�푐 )}
⋅ 𝑝�푇�휙 (𝜙�푇) 𝑝�푅�휙 (𝜙�푅) 𝑑𝜙�푅 𝑑𝜙�푇.

(35)

This means that, for a constant value of 𝑓, say 𝑓 = 𝑓�耠,
the channel transfer function 𝐻(𝑡; 𝑓�耠) can be deemed WSS
in the time domain within the relevant observation interval𝑡 ∈ [0, 𝑇0]. Analogously, 𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓) can be simplified
to a frequency-independent function if Δ𝑡 = 0. Under such
conditions, 𝑅�퐻(𝑡, 𝑓; Δ𝑡; Δ𝑓)|Δ�푡=0 = Π�푇0(𝑡)𝐹�퐻(𝑡; Δ𝑓), where𝐹�퐻(𝑡; Δ𝑓) is a time-varying frequency correlation function
(FCF) equal to

𝐹�퐻 (𝑡; Δ𝑓) = 𝜎�퐻∫�휋
−�휋

∫�휋
−�휋

exp{−𝑗2𝜋Δ𝑓[𝐺�푇 (𝜙�푇) + 𝐺�푆 (𝜙�푇, 𝜙�푅) + 𝐺�푅 (𝜙�푅)𝐶�푙 − 𝑡𝑓�퐷 (𝜙�푇, 𝜙�푅)𝑓�푐 ]}𝑝�푇�휙 (𝜙�푇) 𝑝�푅�휙 (𝜙�푅) 𝑑𝜙�푅 𝑑𝜙�푇. (36)

Thus, for a constant value of 𝑡, say 𝑡 = 𝑡�耠, the channel
transfer function 𝐻(𝑡�耠; 𝑓) can be modeled as a WSS
process in the frequency domain. We note that the

Kronecker factorization holds also for both the frequency-
varying TCF 𝑇�퐻(𝑓; Δ𝑡) and the time-varying FCF𝐹�퐻(𝑡; Δ𝑓).
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Even though the proposed channel model is a non-
WSSUS random process, the two particular cases discussed
above show that 𝐻(𝑡; 𝑓) fulfills the WSS condition in one
dimension (either time or frequency) if the channel’s dis-
persion is neglected in the other dimension. This charac-
teristic makes our proposal compatible with some notable
channel models that are widely accepted benchmarks for
the performance analysis of wireless communication systems.
Consider, for example, the model proposed by Clarke in
[9] for WSS frequency-nonselective (narrowband) Rayleigh
fading channels.

The mathematical definition of wide-sense stationarity
requires the first- and second-order (SO) statistical properties
of a random process to be invariant over the corresponding
index set (the time or frequency lines, or the TF plane).While
difficult tomeet, the condition of statistical invariance should
always be the yardstick to determine whether a random
process is WSS or not. Then, if the process is found to be
nonstationary, we should turn our attention to the concept
of quasi-stationarity to obtain a less rigid notion of its
stationarity properties [35]. Even though a thorough analysis
of quasi-stationarity is beyond the scope of this paper, some
interesting remarks can be made in that regard from (26).
For example, in practice, the values of 𝑓 are restricted to𝑓 ∈ [−𝐵/2, 𝐵/2], where 𝐵 is the signal’s bandwidth. Given
that 𝐵 is typically much smaller than the carrier frequency𝑓�푐, the factor 𝑓 ⋅ Δ𝑡 ⋅ 𝑓�퐷(𝜙�푇, 𝜙�푅)/𝑓�푐, which determines the
dependence of 𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓) on the frequency variable 𝑓,
can be approximated as Δ𝑡 ⋅ 𝑓�퐷(𝜙�푇, 𝜙�푅)𝑓/𝑓�푐 ≈ 0. This
means that the channel can be modeled by a quasi-WSS
random process in the frequency domain if we consider a
frequency observation interval of a length similar to the
signal’s bandwidth and 𝐵 ≪ 𝑓�푐. On the other hand, the
dependence of 𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓) on the time variable 𝑡 is given
by the term 𝑡 ⋅ Δ𝑓 ⋅ 𝑓�퐷(𝜙�푇, 𝜙�푅)/𝑓�푐, which is influenced by
the degree of mobility of 𝑇�푋 and 𝑅�푋 (through the Doppler
frequency shift 𝑓�퐷(𝜙�푇, 𝜙�푅)), the signal’s bandwidth (through
the frequency lagΔ𝑓 ∈ [−𝐵, 𝐵]), and the carrier frequency𝑓�푐.
Hence, the channel may be modeled by a quasi-WSS random
process in the time domain over the region associated withΥ(𝑡, Δ𝑡) if the MSs move at very low speeds (such that𝑓�퐷(𝜙�푇, 𝜙�푅) ≈ 0), or if the signal’s bandwidth 𝐵 is much
smaller than 𝑓�푐, such that 𝑓�퐷(𝜙�푇, 𝜙�푅)Δ𝑓/𝑓�푐 ≈ 0, ∀Δ𝑓 ∈[−𝐵, 𝐵]. Nonetheless, to properly assess the quasi-stationarity
properties of the proposed channel model, a more formal and
mathematically rigorous analysis is required.

3.4. TF-Dependent Delay and Doppler Profiles. The spectral
properties of the proposed channel model can be analyzed on
the grounds of the TF-dependent delay and Doppler profiles.
These two functions are given, respectively, as [31]

𝑃�퐻 (𝑡, 𝑓; 𝜏) ≜ ∫∞
−∞

𝑅�퐻 (𝑡, 𝑓; 0, Δ𝑓) exp {𝑗2𝜋𝜏Δ𝑓} 𝑑Δ𝑓 (37)

= Π�푇0 (𝑡) ∫
∞

−∞
𝐹�퐻 (𝑡; Δ𝑓) exp {𝑗2𝜋𝜏Δ𝑓} 𝑑Δ𝑓 (38)

𝐷�퐻 (𝑡, 𝑓; 𝜐)
≜ ∫∞
−∞

𝑅�퐻 (𝑡, 𝑓; Δ𝑡, 0) exp {−𝑗2𝜋𝜐Δ𝑡} 𝑑Δ𝑡 (39)

= Π�푇0 (𝑡)
⋅ ∫∞
−∞

Π�푇0 (𝑡 − Δ𝑡) 𝑇�퐻 (𝑓; Δ𝑡) exp {−𝑗2𝜋𝜐Δ𝑡} 𝑑Δ𝑡. (40)

By substituting (36) and (35) into (38) and (40), we find

𝑃�퐻 (𝑡, 𝑓; 𝜏) = 𝜎�퐻Π�푇0 (𝑡) ∫
�휋

−�휋
∫�휋
−�휋

𝛿(𝜏 + 𝑡𝑓�퐷 (𝜙�푇, 𝜙�푅)𝑓�푐
− 𝐺�푇 (𝜙�푇) + 𝐺�푆 (𝜙�푇, 𝜙�푅) + 𝐺�푅 (𝜙�푅)𝐶�푙 )𝑝�푇�휙 (𝜙�푇)
⋅ 𝑝�푅�휙 (𝜙�푅) 𝑑𝜙�푅 𝑑𝜙�푇

(41)

𝐷�퐻 (𝑡, 𝑓; 𝜐) = 𝜎�퐻𝑇0Π�푇0 (𝑡)
⋅ ∫�휋
−�휋

∫�휋
−�휋

sinc(𝜋𝑇0 [𝜐 − 𝑓�퐷 (𝜙�푇, 𝜙�푅) (𝑓�푐 + 𝑓𝑓�푐 )])
⋅ exp{−𝑗2𝜋 [𝜐 − 𝑓�퐷 (𝜙�푇, 𝜙�푅) (𝑓�푐 + 𝑓𝑓�푐 )](𝑡 − 𝑇02 )}
⋅ 𝑝�푇�휙 (𝜙�푇) 𝑝�푅�휙 (𝜙�푅) 𝑑𝜙�푅 𝑑𝜙�푇,

(42)

where sinc(𝑥) ≜ sin(𝑥)/𝑥 is the sinc function. Equation (41)
shows that the delay profile of the proposed channel model
is a frequency-invariant function 𝑃�퐻(𝑡; 𝜏), which depends
on the channel’s angular statistics and the propagation area
geometry. The Doppler profile, on the other hand, is a
TF-dependent function that depends only on the channel’s
angular statistics.

4. Particular Case: The Geometrical Two-Ring
Scattering Model

4.1. Background. The definite integrals in (30), (33), and
(34) can be evaluated numerically without major difficulties
if 𝐺�푇, 𝐺�푅, 𝑝�푇�휙 , and 𝑝�푅�휙 are known. In fact, the 4D TF-CF
can be expressed in a closed form if the abovementioned
functions allow writing the integral at the right-hand side
of (34) in terms of standard functions. This is demonstrated
in this section by considering the particular case of the
geometrical two-ring scattering model and the von Mises
distribution of the AOD and AOA.The geometrical two-ring
model has widely been employed as a reference to analyze
the correlation properties of F2M and V2V fading channels
assuming the fulfillment of the WSSUS condition [24, 33]. In
this geometrical model, 𝑇�푋 and 𝑅�푋 are each surrounded by a
ring of IOs, in such a way that

𝐺�푇 (𝜙�푇) = 𝑟�푇, ∀𝜙�푇 (43a)

𝐺�푅 (𝜙�푅) = 𝑟�푅, ∀𝜙�푅, (43b)
where 𝑟�푘, 𝑘 ∈ {𝑇, 𝑅}, is the radius of the ring of IOs
surrounding 𝑇�푋 (when 𝑘 = 𝑇) and 𝑅�푋 (when 𝑘 = 𝑅). An
illustration of this model is shown in Figure 2.
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Figure 2: The geometrical two-ring model.

The von Mises distribution, on the other hand, is a
well-known model for the statistics of circular data and is
analogous to the Gaussian distribution on the line [36].
Following the von Mises distribution, we define

𝑝�푘�휙 (𝜙) = exp {𝜅�푘 cos (𝜙 − 𝜇�푘)}2𝜋𝐼0 (𝜅�푘) , 𝑘 ∈ {𝑇, 𝑅} , (44)

where 𝜇�푘 and 𝜅�푘 are the distribution’s mean value and con-
centration parameter and 𝐼0 is the modified Bessel function
of the first kind and zeroth order.

4.2. Closed-Form Solution of the 4D TF-CF. Without loss of
generality, we will assume that the time-invariant vectors
O�푇 and O�푅 introduced in Figure 1 are collinear with the 𝑥-
axis, such that D = O�푅 − O�푇 = [𝐷, 0]†. In addition, we
will assume that 𝐷 ≫ max{𝑟�푇, 𝑟�푅}. Under these conditions,
and substituting (43a), (43b), and (44) into (34), we show in
Appendix B that

𝑅�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) = 𝜎�퐻Υ (𝑡, Δ𝑡)
⋅ exp {−𝑗2𝜋Δ𝑓 (𝐷 + 𝑟�푇 + 𝑟�푅) /𝐶�푙}𝐼0 (𝜅�푇) 𝐼0 (𝜅�푅)
⋅ 𝐼0 ({[𝜅�푇 cos (𝜇�푇) + 𝑗2𝜋𝐵�푇�푐 ]2

+ [𝜅�푇 sin (𝜇�푇) + 𝑗2𝜋𝐵�푇�푠 ]2}1/2)
⋅ 𝐼0 ({[𝜅�푅 cos (𝜇�푅) + 𝑗2𝜋𝐵�푅�푐 ]2

+ [𝜅�푅sin (𝜇�푅) + 𝑗2𝜋𝐵�푅�푠 ]2}1/2) ,

(45)

where

𝐵�푘�푐 = 𝑓�푘max cos (𝛾�푘) 𝑍 (𝑡, 𝑓, Δ𝑡, Δ𝑓) − 𝑞�푘Δ𝑓𝑟�푘𝐶�푙 (46a)

𝐵�푘�푠 = 𝑓�푘max sin (𝛾�푘) 𝑍 (𝑡, 𝑓, Δ𝑡, Δ𝑓) (46b)

for 𝑘 ∈ {𝑇, 𝑅}, and
𝑍 (𝑡, 𝑓, Δ𝑡, Δ𝑓) = Δ𝑡 (𝑓�푐 + 𝑓𝑓�푐 ) + Δ𝑓 𝑡𝑓�푐 . (47)

4.3. Numerical Examples. In the remainder of this section,
we present some graphical examples of the 4D TF-CF𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓) in (45) and the corresponding time-varying
delay profile 𝑃�퐻(𝑡; 𝜏) and TF-dependent Doppler profile𝐷�퐻(𝑡, 𝑓; 𝜐). The expressions presented in Section 3 for the
FO PDFs of the envelope and phase are not considered here
because they have already been analyzed in [30]. For the eval-
uation of 𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓), 𝑃�퐻(𝑡; 𝜏), and 𝐷�퐻(𝑡, 𝑓; 𝜐), we have
chosen 𝑓�푐 = 5.9GHz, 𝐵 = 10MHz, 𝑇0 = 6.4ms, 𝛾�푇 = 60∘,𝛾�푅 = 250∘, 𝐷 = 500m, 𝑟�푇 = 30m, 𝑟�푅 = 40m, 𝑓�푇max = 500Hz
(corresponding to a speed of 91.4 km/h), 𝑓�푅max = 500Hz,𝜎�퐻 = 1, 𝜅�푇 = 1 (moderate nonisotropic dispersion), 𝜅�푅 = 10
(highly nonisotropic dispersion), 𝜇�푇 = 60∘, and 𝜇�푅 = 120∘.
The system related parameters𝑓�푐,𝐵, and𝑇0 are taken from the
IEEE 802.11p standard for vehicular DSRC systems [3] (the
value of 𝑇0 equals the duration of a signal frame comprising
800 data symbols, each having a length of 8 𝜇s).
4.3.1. 4D TF-CF. A 3D graph and a contour plot of the
absolute value of 𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓) are presented in Figure 3
for an arbitrary observation point (𝑡, 𝑓) = (0.5𝑇0, 0.3𝐵)
in the TF plane. These two graphs show that the proposed
channel model is a non-WSSUS random process, because
its 4D TF-CF has an asymmetrical shape. We recall that a
fundamental property of WSS random processes is that their
autocorrelation function (ACF) is symmetric around the
origin [37,Theorem 10.12]. Particularly, for a complex-valued
one-dimensional (1D) random process 𝜒(𝜂) defined in either
the time or the frequency domain, theWSS condition implies
that 𝑅∗�휒(𝜂; Δ𝜂) = 𝑅�휒(𝜂; −Δ𝜂), ∀𝜂, Δ𝜂 ∈ R, where 𝑅�휒(𝜂; Δ𝜂) ≜𝐸{𝜒∗(𝜂)𝜒(𝜂 − Δ𝜂)} is the ACF of 𝜒(𝜂). Analogously, for a
complex-valued 2D random process 𝜒(𝑡; 𝑓) defined in the TF
plane, it can be shown that theWSSUS condition implies that𝑅�휒(𝑡, 𝑓; Δ𝑡, Δ𝑓) = 𝑅∗�휒(𝑡, 𝑓; Δ𝑡, −Δ𝑓) = 𝑅∗�휒(𝑡, 𝑓; −Δ𝑡, Δ𝑓) =𝑅�휒(𝑡, 𝑓; −Δ𝑡, −Δ𝑓), ∀𝑡, 𝑓, where 𝑅�휒(𝑡, 𝑓; Δ𝑡, Δ𝑓) is the 4D TF-
CF defined in (25).

To make the asymmetries of 𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓) more evi-
dent, Figure 4 shows curves of the absolute value of𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓) generated for fixed values of either the
frequency lag Δ𝑓 or the time lag Δ𝑡. The curves shown in
Figure 4(a) were computed for Δ𝑓 ∈ {−2.5 × 106, −1.25 ×106, 0, 1.25 × 106, 2.5 × 106}, while the ones presented in
Figure 4(b) were generated for Δ𝑡 ∈ {−8 × 10−4, −3 ×10−4, 0, 3×10−4, 8×10−4}.The graphs obtained forΔ𝑓 = 0 andΔ𝑡 = 0 correspond to the particular cases of the frequency-
varying TCF 𝑇�퐻(𝑓; Δ𝑡) and the time-varying FCF 𝐹�퐻(𝑡; Δ𝑓),
respectively.

Aside from the particular cases of 𝑇�퐻(𝑓; Δ𝑡)
and 𝐹�퐻(𝑡; Δ𝑓), we can observe from Figure 4 that|𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓)| is an asymmetrical function. However,
the asymmetries of |𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓)| smoothen off gradually
as the channel becomes nondispersive in one dimension.
This behavior shows that the proposed channel model’s
quasi-stationary characteristics are stronger as the 2D TF lag(Δ𝑡, Δ𝑓) approaches the ideal pairings that lead to 𝑇�퐻(𝑓; Δ𝑡)
and 𝐹�퐻(𝑡; Δ𝑓). On the other hand, the symmetrical shape of𝑇�퐻(𝑓; Δ𝑡) and 𝐹�퐻(𝑡; Δ𝑓) can be taken as graphical evidence
for the observationwemade in the previous section about the
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proposed channel model becoming a WSS random process
in one dimension (time or frequency) if its dispersiveness
is neglected in the other dimension. Even though these two
ideal cases have limited practical significance, they are of
theoretical relevance, as they allow identifying scenarios
where the WSS condition is met in one dimension.

4.3.2. Time-Frequency Dependent Delay Profile. A 3D graph
and a contour plot of the time-varying delay profile 𝑃�퐻(𝑡; 𝜏)
are presented in Figure 5. To highlight the time-varying
nature of 𝑃�퐻(𝑡; 𝜏), we have considered a larger observation

time window of length 𝑇0 = 320ms. In our simulation
setup, the MSs are moving towards each other along nearly
parallel trajectories. This explains the shortening of the
minimum propagation delay, 𝜏min(𝑡), which is defined as the
propagation delay of the plane wave that travels to 𝑅�푋 over
the shortest path. Note that 𝜏min(𝑡) shrinks from 1.6678𝜇s at𝑡 = 0 to 1.6457 𝜇s at 𝑡 = 320ms. On the other hand, the
maximum propagation delay, 𝜏max(𝑡), which is defined as the
propagation delay of the plane wave that travels to 𝑅�푋 over
the largest path, increases from 2.1127ms to around 2.15ms.
This increment is due to the fact that as time evolves, theMSs
get closer to some IOs but farther off from others.
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Figure 5: Absolute value of the time-varying delay profile 𝑃�퐻(𝑡; 𝜏) for 𝑇0 = 320ms.
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Figure 6: Absolute value of the TF-varying Doppler profile𝐷�퐻(𝑡, 𝑓; 𝜐) for 𝑡 = 0.8𝑇0 and 𝑇0 = 320ms.

4.3.3. Time-Frequency Dependent Doppler Profile. Finally,
Figure 6 shows a 3D graph and a contour plot of the TF-
varying Doppler profile 𝐷�퐻(𝑡, 𝑓; 𝜐) evaluated at 𝑡 = 0.8𝑇0.
While the variability of𝐷�퐻(𝑡, 𝑓; 𝜐) in the frequency𝑓 variable
is not evident in the figure, the shape of𝐷�퐻(𝑡, 𝑓; 𝜐) does vary
in the frequency domain, but at a rate that is much smaller
than the length of the observation window 𝑓 ∈ [−𝐵/2, 𝐵/2].
This is demonstrated in Figure 7, where we present the same
contour plot of Figure 6(b) but for an expanded observation
window 𝑓 ∈ [−100𝐵, 100𝐵]. Regarding the time variations
of 𝐷�퐻(𝑡, 𝑓; 𝜐), these are the result of convolving the spectra

of the time-invariant TCF 𝑇�퐻(𝑓; Δ𝑡) and the time-dependent
window function Π�푇0(𝑡). Such temporal variations manifest
themselves by a rippling effect in the spectrum of 𝑇�퐻(𝑓; Δ𝑡).
Our numerical experiments indicate that this effect is rather
mild, making the time-varying nature of 𝐷�퐻(𝑡, 𝑓; 𝜐) almost
imperceptible. This is demonstrated by comparing the 3D
surface of Figure 6(a) with the one presented in Figure 8,
where the value of the observation time 𝑡 is equal to 𝑡 = 0.1𝑇0.
Hence, based on our numerical results, we conclude that, for
most practical purposes, the Doppler profile of the proposed
channel model can be considered a time-invariant function
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𝐷�퐻(𝑓; 𝜐). However, the frequency variations of 𝐷�퐻(𝑓; 𝜐)
should in general not be neglected.

5. Conclusions

In this paper, we have proposed a novel GBSM for small-
scale non-WSSUS V2V double-Rayleigh fading channels.
The model is quite flexible and can easily be adapted to a
wide range of 2D and 3D geometrical propagation scenarios.
Based on this model, we derived general expressions for
the envelope and phase distributions, the 4D TF-CF, and
the TF-dependent delay and Doppler profiles. The obtained
expressions show that the 4D TF-CF of the proposed channel
model is a TF-varying function. However, such expressions
also show that the corresponding delay profile is invariant
in the frequency domain, while the Doppler profile can be
deemed invariant in the time domain for most practical

purposes. Even though the proposed model does not fulfill
the WSS condition simultaneously in the time and the
frequency domains, it becomes aWSS random process in one
dimension (time or frequency) if the channel’s dispersiveness
is neglected in the other dimension. For the more relevant
case of 2D dispersion, our results suggest that the proposed
channel model is quasi-WSS over small observation regions
in the TF plane. However, a more formal analysis is necessary
to assess the model’s quasi-stationarity characteristics.

Appendix

A. Derivation of (26)

By a direct evaluation of (25), and taking into account the
definition of the propagation delays 𝜏ℓ,�푚(𝑡) given by (13), we
find
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𝑅�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) = Π�푇0 (𝑡) Π�푇0 (𝑡 − Δ𝑡) �퐿∑
ℓ=1

�퐿∑
�푝=1

�푀∑
�푚=1

�푀∑
�푞=1

𝐸 {𝑔�푇ℓ 𝑔�푇�푝} 𝐸 {𝑔�푅�푚𝑔�푅�푞 } 𝐸 {exp {𝑗 (𝜃�푇ℓ − 𝜃�푇�푝)}} 𝐸 {exp {𝑗 (𝜃�푅�푚 − 𝜃�푅�푞 )}}
⋅ 𝐸 {exp {𝑗2𝜋 [(𝑓�푐 + 𝑓) 𝜏ℓ,�푚 (𝑡 − Δ𝑡) − (𝑓�푐 + 𝑓 + Δ𝑓) 𝜏�푝,�푞 (𝑡)]}} ,

𝑅�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) = Υ (𝑡 − Δ𝑡) �퐿∑
ℓ=1

�푀∑
�푚=1

𝐸 {󵄨󵄨󵄨󵄨󵄨𝑔�푇ℓ 󵄨󵄨󵄨󵄨󵄨2} 𝐸 {󵄨󵄨󵄨󵄨󵄨𝑔�푅�푚󵄨󵄨󵄨󵄨󵄨2} 𝐸{exp{𝑗2𝜋 [Δ𝑡𝑓�퐷ℓ,�푚 (𝑓�푐 + 𝑓𝑓�푐 ) − Δ𝑓𝜏ℓ,�푚 (𝑡)]}}
(A.1)

The propagation delays 𝜏ℓ,�푚(𝑡) are statistically equivalent
random processes for all ℓ ∈ {1, 2, . . . , card{𝑆�푇}} and𝑚 ∈ {1, 2, . . . , card{𝑆�푅}}. For this reason, we can take the
third expectation out of the double summation in the latest
equation. Then, taking account of (19), we get to the result
presented in (26).

B. Derivation of (45)

Assuming that 𝐺�푇(𝜙�푇) = 𝑟�푇, ∀𝜙�푇, 𝐺�푇 = 𝑟�푅, ∀𝜙�푅, and D =[𝐷, 0]†, we can express (32) as

𝐷�푘 (𝜙�푘) = 𝐷2 + 𝑞�푘𝑟�푘 cos (𝜙�푘) , 𝑘 ∈ {𝑇, 𝑅} . (B.1)

Substituting this result into (34), we find

𝑅�푘�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) = 𝜁�푘Υ (𝑡, Δ𝑡)
⋅ ∫�휋
−�휋

exp{𝑗2𝜋[Δ𝑡𝑓�푘max cos (𝜙�푘 − 𝛾�푘) (𝑓�푐 + 𝑓𝑓�푐 ) − Δ𝑓(𝐷/2 + 𝑟�푘 [1 + 𝑞�푘 cos (𝜙�푘)]𝐶�푙 − 𝑡𝑓�푘max cos (𝜙�푘 − 𝛾�푘)𝑓�푐 )]}
⋅ 𝑝�푘�휙 (𝜙�푘) 𝑑𝜙�푘.

(B.2)

After some simple algebraic manipulations, we obtain

𝑅�푘�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓) = 𝜁�푘Υ (𝑡, Δ𝑡)
⋅ exp{−𝑗𝜋 (𝐷 + 2𝑟�푘) Δ𝑓𝐶�푙 }
⋅ ∫�휋
−�휋

exp {𝑗2𝜋 [cos (𝜙�푘) 𝐵�푘�푐 + sin (𝜙�푘) 𝐵�푘�푠 ]}
⋅ 𝑝�푘�휙 (𝜙�푘) 𝑑𝜙�푘,

(B.3)

where 𝐵�푘�푐 and 𝐵�푘�푠 are defined in (46a) and (46b). Substituting
the von Mises PDF into the above equation and making use
of [38, Eq. (3.338–4)], we have

𝑅�푘�퐻 (𝑡, 𝑓; Δ𝑡, Δ𝑓)
= 𝜁�푘Υ (𝑡, Δ𝑡) exp {−𝑗𝜋 (𝐷 + 2𝑟�푘) Δ𝑓/𝐶�푙}𝐼0 (𝜅�푘)
⋅ 𝐼0 ({[𝜅�푘 cos (𝜇�푘) + 𝑗2𝜋𝐵�푘�푐 ]2

+ [𝜅�푘 sin (𝜇�푘) + 𝑗2𝜋𝐵�푘�푠 ]2}1/2) .

(B.4)

Finally, from (33), we obtain the expression presented in (45)
for 𝑅�퐻(𝑡, 𝑓; Δ𝑡, Δ𝑓).
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